Controlling Cherenkov angles with resonance transition radiation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-08

AUTHORS

Xiao Lin, Sajan Easo, Yichen Shen, Hongsheng Chen, Baile Zhang, John D. Joannopoulos, Marin Soljačić, Ido Kaminer

ABSTRACT

Cherenkov radiation provides a valuable way to identify high-energy particles in a wide momentum range, through the relation between the particle velocity and the Cherenkov angle. However, since the Cherenkov angle depends only on the material’s permittivity, the material unavoidably sets a fundamental limit to the momentum coverage and sensitivity of Cherenkov detectors. For example, ring-imaging Cherenkov detectors must employ materials transparent to the frequency of interest as well as possessing permittivities close to unity to identify particles in the multi-gigaelectronvolt range, and thus are often limited to large gas chambers. It would be extremely important, albeit challenging, to lift this fundamental limit and control Cherenkov angles at will. Here we propose a new mechanism that uses the constructive interference of resonance transition radiation from photonic crystals to generate both forward and backward effective Cherenkov radiation. This mechanism can control the radiation angles in a flexible way with high sensitivity to any desired range of velocities. Photonic crystals thus overcome the material limit for Cherenkov detectors, enabling the use of transparent materials with arbitrary values of permittivity, and provide a promising versatile platform well suited for identification of particles at high energy with enhanced sensitivity. The angle of Cherenkov radiation in one-dimensional photonic crystals can be controlled by making use of constructive interference. This feature allows new design of particle detectors with improved performance. More... »

PAGES

816-821

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41567-018-0138-4

DOI

http://dx.doi.org/10.1038/s41567-018-0138-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103931844


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanyang Technological University", 
          "id": "https://www.grid.ac/institutes/grid.59025.3b", 
          "name": [
            "State Key Laboratory of Modern Optical Instrumentation, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Hangzhou, China", 
            "Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Xiao", 
        "id": "sg:person.01012024752.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012024752.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rutherford Appleton Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.76978.37", 
          "name": [
            "Particle Physics Department, Rutherford-Appleton Laboratory (STFC-UKRI), Didcot, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Easo", 
        "givenName": "Sajan", 
        "id": "sg:person.015442310401.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015442310401.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Yichen", 
        "id": "sg:person.01051202044.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051202044.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "State Key Laboratory of Modern Optical Instrumentation, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Hongsheng", 
        "id": "sg:person.01110335132.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110335132.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanyang Technological University", 
          "id": "https://www.grid.ac/institutes/grid.59025.3b", 
          "name": [
            "Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore", 
            "Centre for Disruptive Photonic Technologies, NTU, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Baile", 
        "id": "sg:person.01246763762.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246763762.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joannopoulos", 
        "givenName": "John D.", 
        "id": "sg:person.0652746550.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652746550.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Solja\u010di\u0107", 
        "givenName": "Marin", 
        "id": "sg:person.011237674067.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011237674067.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technion \u2013 Israel Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6451.6", 
          "name": [
            "Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaminer", 
        "givenName": "Ido", 
        "id": "sg:person.01250220042.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250220042.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0168-9002(94)90532-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010887027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-9002(94)90532-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010887027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.6.011006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011322568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.6.011006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011322568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.20.022953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012040616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.113901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025011626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.113901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025011626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2015.137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026521325", 
          "https://doi.org/10.1038/nnano.2015.137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2004.08.129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027332737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.241104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027835105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.241104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027835105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2014.11.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028020216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2014.11.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028020216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2014.11.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028020216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2014.11.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028020216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028649416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028649416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.127401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035111374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.127401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035111374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(79)90052-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036253450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(79)90052-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036253450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2015.223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037377878", 
          "https://doi.org/10.1038/nphoton.2015.223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2007.140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037540947", 
          "https://doi.org/10.1038/nphoton.2007.140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.94.053852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038449365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.94.053852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038449365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1369-7021(11)70020-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038543007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjc/s10052-013-2431-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046265458", 
          "https://doi.org/10.1140/epjc/s10052-013-2431-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046331394", 
          "https://doi.org/10.1038/nature00972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046331394", 
          "https://doi.org/10.1038/nature00972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/171349a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047349382", 
          "https://doi.org/10.1038/171349a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9002(01)02013-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048036009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2011.09.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051846470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.7.011003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053851521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.7.011003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053851521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma051649x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056191236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma051649x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056191236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2032590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057836048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-0221/3/08/s08005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059171778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.100.947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060416928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.100.947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060416928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.92.1069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060461221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.92.1069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060461221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.081404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060646854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.081404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060646854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.163904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.163904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.095003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.095003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.194801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.194801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.184801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.184801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.223901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.223901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.153902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.153902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.167402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.167402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.237701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060766860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.237701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060766860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.33.1404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060778448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.33.1404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060778448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.143902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.143902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1079549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062447237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1249799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062469312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.1601192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083395666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.1601192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083395666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms14901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084129071", 
          "https://doi.org/10.1038/ncomms14901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2017.45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084739592", 
          "https://doi.org/10.1038/nphoton.2017.45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2017.45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084739592", 
          "https://doi.org/10.1038/nphoton.2017.45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aah6822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085767623"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08", 
    "datePublishedReg": "2018-08-01", 
    "description": "Cherenkov radiation provides a valuable way to identify high-energy particles in a wide momentum range, through the relation between the particle velocity and the Cherenkov angle. However, since the Cherenkov angle depends only on the material\u2019s permittivity, the material unavoidably sets a fundamental limit to the momentum coverage and sensitivity of Cherenkov detectors. For example, ring-imaging Cherenkov detectors must employ materials transparent to the frequency of interest as well as possessing permittivities close to unity to identify particles in the multi-gigaelectronvolt range, and thus are often limited to large gas chambers. It would be extremely important, albeit challenging, to lift this fundamental limit and control Cherenkov angles at will. Here we propose a new mechanism that uses the constructive interference of resonance transition radiation from photonic crystals to generate both forward and backward effective Cherenkov radiation. This mechanism can control the radiation angles in a flexible way with high sensitivity to any desired range of velocities. Photonic crystals thus overcome the material limit for Cherenkov detectors, enabling the use of transparent materials with arbitrary values of permittivity, and provide a promising versatile platform well suited for identification of particles at high energy with enhanced sensitivity. The angle of Cherenkov radiation in one-dimensional photonic crystals can be controlled by making use of constructive interference. This feature allows new design of particle detectors with improved performance.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41567-018-0138-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3797618", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Controlling Cherenkov angles with resonance transition radiation", 
    "pagination": "816-821", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "abd80991cfce75940b84be717e0f1c3ddd6b993f9f0863bc502240fe495558a0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41567-018-0138-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103931844"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41567-018-0138-4", 
      "https://app.dimensions.ai/details/publication/pub.1103931844"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41567-018-0138-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0138-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0138-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0138-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0138-4'


 

This table displays all metadata directly associated to this object as RDF triples.

263 TRIPLES      21 PREDICATES      70 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41567-018-0138-4 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nde8f5765613148ad8ca2887b40b73496
4 schema:citation sg:pub.10.1038/171349a0
5 sg:pub.10.1038/nature00972
6 sg:pub.10.1038/ncomms14901
7 sg:pub.10.1038/nnano.2015.137
8 sg:pub.10.1038/nphoton.2007.140
9 sg:pub.10.1038/nphoton.2015.223
10 sg:pub.10.1038/nphoton.2017.45
11 sg:pub.10.1140/epjc/s10052-013-2431-9
12 https://doi.org/10.1016/0168-9002(94)90532-0
13 https://doi.org/10.1016/0370-1573(79)90052-8
14 https://doi.org/10.1016/j.nima.2004.08.129
15 https://doi.org/10.1016/j.nima.2011.09.041
16 https://doi.org/10.1016/j.nima.2014.11.120
17 https://doi.org/10.1016/s0168-9002(01)02013-7
18 https://doi.org/10.1016/s1369-7021(11)70020-7
19 https://doi.org/10.1021/ma051649x
20 https://doi.org/10.1063/1.2032590
21 https://doi.org/10.1088/1748-0221/3/08/s08005
22 https://doi.org/10.1103/physrev.100.947
23 https://doi.org/10.1103/physrev.92.1069
24 https://doi.org/10.1103/physreva.94.053852
25 https://doi.org/10.1103/physrevb.79.241104
26 https://doi.org/10.1103/physrevb.92.081404
27 https://doi.org/10.1103/physrevlett.100.163904
28 https://doi.org/10.1103/physrevlett.103.095003
29 https://doi.org/10.1103/physrevlett.103.113901
30 https://doi.org/10.1103/physrevlett.103.194801
31 https://doi.org/10.1103/physrevlett.105.127401
32 https://doi.org/10.1103/physrevlett.108.184801
33 https://doi.org/10.1103/physrevlett.108.223901
34 https://doi.org/10.1103/physrevlett.109.153902
35 https://doi.org/10.1103/physrevlett.113.167402
36 https://doi.org/10.1103/physrevlett.117.237701
37 https://doi.org/10.1103/physrevlett.33.1404
38 https://doi.org/10.1103/physrevlett.91.143902
39 https://doi.org/10.1103/physrevx.6.011006
40 https://doi.org/10.1103/physrevx.7.011003
41 https://doi.org/10.1103/revmodphys.82.209
42 https://doi.org/10.1126/sciadv.1601192
43 https://doi.org/10.1126/science.1079549
44 https://doi.org/10.1126/science.1249799
45 https://doi.org/10.1126/science.aah6822
46 https://doi.org/10.1364/oe.20.022953
47 schema:datePublished 2018-08
48 schema:datePublishedReg 2018-08-01
49 schema:description Cherenkov radiation provides a valuable way to identify high-energy particles in a wide momentum range, through the relation between the particle velocity and the Cherenkov angle. However, since the Cherenkov angle depends only on the material’s permittivity, the material unavoidably sets a fundamental limit to the momentum coverage and sensitivity of Cherenkov detectors. For example, ring-imaging Cherenkov detectors must employ materials transparent to the frequency of interest as well as possessing permittivities close to unity to identify particles in the multi-gigaelectronvolt range, and thus are often limited to large gas chambers. It would be extremely important, albeit challenging, to lift this fundamental limit and control Cherenkov angles at will. Here we propose a new mechanism that uses the constructive interference of resonance transition radiation from photonic crystals to generate both forward and backward effective Cherenkov radiation. This mechanism can control the radiation angles in a flexible way with high sensitivity to any desired range of velocities. Photonic crystals thus overcome the material limit for Cherenkov detectors, enabling the use of transparent materials with arbitrary values of permittivity, and provide a promising versatile platform well suited for identification of particles at high energy with enhanced sensitivity. The angle of Cherenkov radiation in one-dimensional photonic crystals can be controlled by making use of constructive interference. This feature allows new design of particle detectors with improved performance.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree true
53 schema:isPartOf N0c39c3154b7241a5a3c810cb949e5582
54 N98852b282afa429080a9a54ea2e51cf5
55 sg:journal.1034717
56 schema:name Controlling Cherenkov angles with resonance transition radiation
57 schema:pagination 816-821
58 schema:productId N9f78896692a84090b581b00d0f60e828
59 Nc3dcfef790c6449689dc73cb3aeea7c8
60 Ndc68736b77844279b3de990b7406dc0f
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103931844
62 https://doi.org/10.1038/s41567-018-0138-4
63 schema:sdDatePublished 2019-04-10T15:47
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N5c42f27837b34391a15296dc418b5643
66 schema:url https://www.nature.com/articles/s41567-018-0138-4
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N0c39c3154b7241a5a3c810cb949e5582 schema:volumeNumber 14
71 rdf:type schema:PublicationVolume
72 N31d51229e3b847a8a909a86412c0db51 rdf:first sg:person.01246763762.12
73 rdf:rest Nd9bce8882f184acb821352924f792d53
74 N5c42f27837b34391a15296dc418b5643 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N5e862185053541b8aad441b851b4f709 rdf:first sg:person.015442310401.45
77 rdf:rest N7bb33d209ff14856af28db3f2fa72fd3
78 N7413ebd275be4df48f38cecaaa003581 rdf:first sg:person.01110335132.50
79 rdf:rest N31d51229e3b847a8a909a86412c0db51
80 N7bb33d209ff14856af28db3f2fa72fd3 rdf:first sg:person.01051202044.24
81 rdf:rest N7413ebd275be4df48f38cecaaa003581
82 N98852b282afa429080a9a54ea2e51cf5 schema:issueNumber 8
83 rdf:type schema:PublicationIssue
84 N9f78896692a84090b581b00d0f60e828 schema:name doi
85 schema:value 10.1038/s41567-018-0138-4
86 rdf:type schema:PropertyValue
87 Nae73e4c309cc4d04a50df0dc6dad52dd rdf:first sg:person.011237674067.45
88 rdf:rest Ncf680430ae854382b5f374b2ba2ad8f3
89 Nc3dcfef790c6449689dc73cb3aeea7c8 schema:name dimensions_id
90 schema:value pub.1103931844
91 rdf:type schema:PropertyValue
92 Ncf680430ae854382b5f374b2ba2ad8f3 rdf:first sg:person.01250220042.33
93 rdf:rest rdf:nil
94 Nd9bce8882f184acb821352924f792d53 rdf:first sg:person.0652746550.07
95 rdf:rest Nae73e4c309cc4d04a50df0dc6dad52dd
96 Ndc68736b77844279b3de990b7406dc0f schema:name readcube_id
97 schema:value abd80991cfce75940b84be717e0f1c3ddd6b993f9f0863bc502240fe495558a0
98 rdf:type schema:PropertyValue
99 Nde8f5765613148ad8ca2887b40b73496 rdf:first sg:person.01012024752.38
100 rdf:rest N5e862185053541b8aad441b851b4f709
101 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
102 schema:name Physical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
105 schema:name Other Physical Sciences
106 rdf:type schema:DefinedTerm
107 sg:grant.3797618 http://pending.schema.org/fundedItem sg:pub.10.1038/s41567-018-0138-4
108 rdf:type schema:MonetaryGrant
109 sg:journal.1034717 schema:issn 1745-2473
110 1745-2481
111 schema:name Nature Physics
112 rdf:type schema:Periodical
113 sg:person.01012024752.38 schema:affiliation https://www.grid.ac/institutes/grid.59025.3b
114 schema:familyName Lin
115 schema:givenName Xiao
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012024752.38
117 rdf:type schema:Person
118 sg:person.01051202044.24 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
119 schema:familyName Shen
120 schema:givenName Yichen
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051202044.24
122 rdf:type schema:Person
123 sg:person.01110335132.50 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
124 schema:familyName Chen
125 schema:givenName Hongsheng
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110335132.50
127 rdf:type schema:Person
128 sg:person.011237674067.45 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
129 schema:familyName Soljačić
130 schema:givenName Marin
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011237674067.45
132 rdf:type schema:Person
133 sg:person.01246763762.12 schema:affiliation https://www.grid.ac/institutes/grid.59025.3b
134 schema:familyName Zhang
135 schema:givenName Baile
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246763762.12
137 rdf:type schema:Person
138 sg:person.01250220042.33 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
139 schema:familyName Kaminer
140 schema:givenName Ido
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250220042.33
142 rdf:type schema:Person
143 sg:person.015442310401.45 schema:affiliation https://www.grid.ac/institutes/grid.76978.37
144 schema:familyName Easo
145 schema:givenName Sajan
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015442310401.45
147 rdf:type schema:Person
148 sg:person.0652746550.07 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
149 schema:familyName Joannopoulos
150 schema:givenName John D.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652746550.07
152 rdf:type schema:Person
153 sg:pub.10.1038/171349a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047349382
154 https://doi.org/10.1038/171349a0
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nature00972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046331394
157 https://doi.org/10.1038/nature00972
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/ncomms14901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129071
160 https://doi.org/10.1038/ncomms14901
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nnano.2015.137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026521325
163 https://doi.org/10.1038/nnano.2015.137
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nphoton.2007.140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037540947
166 https://doi.org/10.1038/nphoton.2007.140
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nphoton.2015.223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037377878
169 https://doi.org/10.1038/nphoton.2015.223
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nphoton.2017.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084739592
172 https://doi.org/10.1038/nphoton.2017.45
173 rdf:type schema:CreativeWork
174 sg:pub.10.1140/epjc/s10052-013-2431-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046265458
175 https://doi.org/10.1140/epjc/s10052-013-2431-9
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/0168-9002(94)90532-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010887027
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/0370-1573(79)90052-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036253450
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.nima.2004.08.129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027332737
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.nima.2011.09.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051846470
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.nima.2014.11.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028020216
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0168-9002(01)02013-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048036009
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s1369-7021(11)70020-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038543007
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/ma051649x schema:sameAs https://app.dimensions.ai/details/publication/pub.1056191236
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1063/1.2032590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057836048
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1088/1748-0221/3/08/s08005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059171778
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrev.100.947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060416928
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrev.92.1069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060461221
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physreva.94.053852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038449365
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevb.79.241104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027835105
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevb.92.081404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060646854
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevlett.100.163904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753313
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevlett.103.095003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755928
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrevlett.103.113901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025011626
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevlett.103.194801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756211
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevlett.105.127401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035111374
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevlett.108.184801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060759683
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevlett.108.223901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060759827
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physrevlett.109.153902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760419
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevlett.113.167402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060763157
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevlett.117.237701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060766860
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1103/physrevlett.33.1404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060778448
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1103/physrevlett.91.143902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060827313
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1103/physrevx.6.011006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011322568
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1103/physrevx.7.011003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053851521
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1103/revmodphys.82.209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028649416
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1126/sciadv.1601192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083395666
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1126/science.1079549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062447237
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1126/science.1249799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062469312
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1126/science.aah6822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085767623
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1364/oe.20.022953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012040616
246 rdf:type schema:CreativeWork
247 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
248 schema:name Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
249 rdf:type schema:Organization
250 https://www.grid.ac/institutes/grid.13402.34 schema:alternateName Zhejiang University
251 schema:name State Key Laboratory of Modern Optical Instrumentation, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Hangzhou, China
252 rdf:type schema:Organization
253 https://www.grid.ac/institutes/grid.59025.3b schema:alternateName Nanyang Technological University
254 schema:name Centre for Disruptive Photonic Technologies, NTU, Singapore, Singapore
255 Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
256 State Key Laboratory of Modern Optical Instrumentation, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Hangzhou, China
257 rdf:type schema:Organization
258 https://www.grid.ac/institutes/grid.6451.6 schema:alternateName Technion – Israel Institute of Technology
259 schema:name Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
260 rdf:type schema:Organization
261 https://www.grid.ac/institutes/grid.76978.37 schema:alternateName Rutherford Appleton Laboratory
262 schema:name Particle Physics Department, Rutherford-Appleton Laboratory (STFC-UKRI), Didcot, UK
263 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...