Ultra-coherent Fano laser based on a bound state in the continuum View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-08-12

AUTHORS

Yi Yu, Aurimas Sakanas, Aref Rasoulzadeh Zali, Elizaveta Semenova, Kresten Yvind, Jesper Mørk

ABSTRACT

It is an important challenge to reduce the power consumption and size of lasers, but progress has been impeded by quantum noise overwhelming the coherent radiation at reduced power levels. Thus, despite considerable progress in microscale and nanoscale lasers, such as photonic crystal lasers, metallic lasers and plasmonic lasers, the coherence length remains very limited. Here we show that a bound state in the continuum based on Fano interference can effectively quench quantum fluctuations. Although fragile in nature, this unusual state redistributes photons such that the effect of spontaneous emission is suppressed. Based on this concept, we experimentally demonstrate a microscopic laser with a linewidth that is more than 20 times smaller than existing microscopic lasers and show that further reduction by several orders of magnitude is feasible. These findings pave the way for numerous applications of microscopic lasers and point to new opportunities beyond photonics. More... »

PAGES

758-764

References to SciGraph publications

  • 2020-10-07. Programmable photonic circuits in NATURE
  • 2015-06-24. Ultralow noise miniature external cavity semiconductor laser in NATURE COMMUNICATIONS
  • 2014-02-20. Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform in NATURE MATERIALS
  • 2016-07-19. Bound states in the continuum in NATURE REVIEWS MATERIALS
  • 2005-02-13. Ultra-high-Q photonic double-heterostructure nanocavity in NATURE MATERIALS
  • 2018-08-20. Directional lasing in resonant semiconductor nanoantenna arrays in NATURE NANOTECHNOLOGY
  • 2011-12-11. Strong coupling between distant photonic nanocavities and its dynamic control in NATURE PHOTONICS
  • 2017-06-12. Deep learning with coherent nanophotonic circuits in NATURE PHOTONICS
  • 2017-04-17. Hybrid indium phosphide-on-silicon nanolaser diode in NATURE PHOTONICS
  • 2015-03-16. Monolayer semiconductor nanocavity lasers with ultralow thresholds in NATURE
  • 2009-08-30. Plasmon lasers at deep subwavelength scale in NATURE
  • 2012-02-08. Thresholdless nanoscale coaxial lasers in NATURE
  • 2007-09-02. Dynamic control of the Q factor in a photonic crystal nanocavity in NATURE MATERIALS
  • 2017-09-01. Fano resonances in photonics in NATURE PHOTONICS
  • 2016-12-12. Demonstration of a self-pulsing photonic crystal Fano laser in NATURE PHOTONICS
  • 2017-01-12. Supercavity lasing in NATURE
  • 2015-12-23. Single-chip microprocessor that communicates directly using light in NATURE
  • 2010-08-01. High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted in NATURE PHOTONICS
  • 2017-01-12. Lasing action from photonic bound states in continuum in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41566-021-00860-5

    DOI

    http://dx.doi.org/10.1038/s41566-021-00860-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1140378739


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Optical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "NanoPhoton \u2013 Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.5170.3", 
              "name": [
                "DTU Fotonik, Technical University of Denmark, Lyngby, Denmark", 
                "NanoPhoton \u2013 Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Yi", 
            "id": "sg:person.016207055512.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016207055512.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "NanoPhoton \u2013 Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.5170.3", 
              "name": [
                "DTU Fotonik, Technical University of Denmark, Lyngby, Denmark", 
                "NanoPhoton \u2013 Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sakanas", 
            "givenName": "Aurimas", 
            "id": "sg:person.016642517665.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016642517665.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "NanoPhoton \u2013 Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.5170.3", 
              "name": [
                "DTU Fotonik, Technical University of Denmark, Lyngby, Denmark", 
                "NanoPhoton \u2013 Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zali", 
            "givenName": "Aref Rasoulzadeh", 
            "id": "sg:person.0636113010.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636113010.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "NanoPhoton \u2013 Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.5170.3", 
              "name": [
                "DTU Fotonik, Technical University of Denmark, Lyngby, Denmark", 
                "NanoPhoton \u2013 Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Semenova", 
            "givenName": "Elizaveta", 
            "id": "sg:person.010767406335.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010767406335.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "NanoPhoton \u2013 Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.5170.3", 
              "name": [
                "DTU Fotonik, Technical University of Denmark, Lyngby, Denmark", 
                "NanoPhoton \u2013 Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yvind", 
            "givenName": "Kresten", 
            "id": "sg:person.01136544222.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136544222.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "NanoPhoton \u2013 Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.5170.3", 
              "name": [
                "DTU Fotonik, Technical University of Denmark, Lyngby, Denmark", 
                "NanoPhoton \u2013 Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "M\u00f8rk", 
            "givenName": "Jesper", 
            "id": "sg:person.01047545773.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047545773.07"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmat1320", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049703325", 
              "https://doi.org/10.1038/nmat1320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2010.177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051823877", 
              "https://doi.org/10.1038/nphoton.2010.177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2017.142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091409232", 
              "https://doi.org/10.1038/nphoton.2017.142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2017.93", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085982498", 
              "https://doi.org/10.1038/nphoton.2017.93"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1994", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040879409", 
              "https://doi.org/10.1038/nmat1994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3873", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052985560", 
              "https://doi.org/10.1038/nmat3873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms8371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044092830", 
              "https://doi.org/10.1038/ncomms8371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41565-018-0245-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106199523", 
              "https://doi.org/10.1038/s41565-018-0245-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/natrevmats.2016.48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047597334", 
              "https://doi.org/10.1038/natrevmats.2016.48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026995369", 
              "https://doi.org/10.1038/nature14290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2016.248", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027308371", 
              "https://doi.org/10.1038/nphoton.2016.248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10840", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049924692", 
              "https://doi.org/10.1038/nature10840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2017.56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084862946", 
              "https://doi.org/10.1038/nphoton.2017.56"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-020-2764-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131472547", 
              "https://doi.org/10.1038/s41586-020-2764-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature20799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037818312", 
              "https://doi.org/10.1038/nature20799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08364", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002908419", 
              "https://doi.org/10.1038/nature08364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2011.286", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042794890", 
              "https://doi.org/10.1038/nphoton.2011.286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/541164a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004829784", 
              "https://doi.org/10.1038/541164a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16454", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030858133", 
              "https://doi.org/10.1038/nature16454"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-08-12", 
        "datePublishedReg": "2021-08-12", 
        "description": "It is an important challenge to reduce the power consumption and size of lasers, but progress has been impeded by quantum noise overwhelming the coherent radiation at reduced power levels. Thus, despite considerable progress in microscale and nanoscale lasers, such as photonic crystal lasers, metallic lasers and plasmonic lasers, the coherence length remains very limited. Here we show that a bound state in the continuum based on Fano interference can effectively quench quantum fluctuations. Although fragile in nature, this unusual state redistributes photons such that the effect of spontaneous emission is suppressed. Based on this concept, we experimentally demonstrate a microscopic laser with a linewidth that is more than 20 times smaller than existing microscopic lasers and show that further reduction by several orders of magnitude is feasible. These findings pave the way for numerous applications of microscopic lasers and point to new opportunities beyond photonics.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41566-021-00860-5", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8586935", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1037430", 
            "issn": [
              "1749-4885", 
              "1749-4893"
            ], 
            "name": "Nature Photonics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "keywords": [
          "microscopic lasers", 
          "photonic crystal lasers", 
          "size of laser", 
          "Fano laser", 
          "coherent radiation", 
          "nanoscale lasers", 
          "plasmonic lasers", 
          "crystal laser", 
          "quantum noise", 
          "quantum fluctuations", 
          "spontaneous emission", 
          "Fano interference", 
          "coherence length", 
          "laser", 
          "orders of magnitude", 
          "power levels", 
          "photonics", 
          "photons", 
          "linewidth", 
          "continuum", 
          "numerous applications", 
          "radiation", 
          "emission", 
          "state", 
          "fluctuations", 
          "new opportunities", 
          "magnitude", 
          "power consumption", 
          "considerable progress", 
          "noise", 
          "microscale", 
          "progress", 
          "interference", 
          "applications", 
          "nature", 
          "length", 
          "order", 
          "further reduction", 
          "size", 
          "effect", 
          "time", 
          "important challenge", 
          "way", 
          "point", 
          "concept", 
          "levels", 
          "reduction", 
          "opportunities", 
          "challenges", 
          "consumption", 
          "findings"
        ], 
        "name": "Ultra-coherent Fano laser based on a bound state in the continuum", 
        "pagination": "758-764", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1140378739"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41566-021-00860-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41566-021-00860-5", 
          "https://app.dimensions.ai/details/publication/pub.1140378739"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_892.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41566-021-00860-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41566-021-00860-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41566-021-00860-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41566-021-00860-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41566-021-00860-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    227 TRIPLES      22 PREDICATES      96 URIs      68 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41566-021-00860-5 schema:about anzsrc-for:02
    2 anzsrc-for:0205
    3 anzsrc-for:0299
    4 schema:author N3429f1115f7b4a15b201aed477099115
    5 schema:citation sg:pub.10.1038/541164a
    6 sg:pub.10.1038/natrevmats.2016.48
    7 sg:pub.10.1038/nature08364
    8 sg:pub.10.1038/nature10840
    9 sg:pub.10.1038/nature14290
    10 sg:pub.10.1038/nature16454
    11 sg:pub.10.1038/nature20799
    12 sg:pub.10.1038/ncomms8371
    13 sg:pub.10.1038/nmat1320
    14 sg:pub.10.1038/nmat1994
    15 sg:pub.10.1038/nmat3873
    16 sg:pub.10.1038/nphoton.2010.177
    17 sg:pub.10.1038/nphoton.2011.286
    18 sg:pub.10.1038/nphoton.2016.248
    19 sg:pub.10.1038/nphoton.2017.142
    20 sg:pub.10.1038/nphoton.2017.56
    21 sg:pub.10.1038/nphoton.2017.93
    22 sg:pub.10.1038/s41565-018-0245-5
    23 sg:pub.10.1038/s41586-020-2764-0
    24 schema:datePublished 2021-08-12
    25 schema:datePublishedReg 2021-08-12
    26 schema:description It is an important challenge to reduce the power consumption and size of lasers, but progress has been impeded by quantum noise overwhelming the coherent radiation at reduced power levels. Thus, despite considerable progress in microscale and nanoscale lasers, such as photonic crystal lasers, metallic lasers and plasmonic lasers, the coherence length remains very limited. Here we show that a bound state in the continuum based on Fano interference can effectively quench quantum fluctuations. Although fragile in nature, this unusual state redistributes photons such that the effect of spontaneous emission is suppressed. Based on this concept, we experimentally demonstrate a microscopic laser with a linewidth that is more than 20 times smaller than existing microscopic lasers and show that further reduction by several orders of magnitude is feasible. These findings pave the way for numerous applications of microscopic lasers and point to new opportunities beyond photonics.
    27 schema:genre article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree true
    30 schema:isPartOf N531c989241504a029a24cafe2834f1b9
    31 Nec5da5a259f44094a0473eac3f49ad48
    32 sg:journal.1037430
    33 schema:keywords Fano interference
    34 Fano laser
    35 applications
    36 challenges
    37 coherence length
    38 coherent radiation
    39 concept
    40 considerable progress
    41 consumption
    42 continuum
    43 crystal laser
    44 effect
    45 emission
    46 findings
    47 fluctuations
    48 further reduction
    49 important challenge
    50 interference
    51 laser
    52 length
    53 levels
    54 linewidth
    55 magnitude
    56 microscale
    57 microscopic lasers
    58 nanoscale lasers
    59 nature
    60 new opportunities
    61 noise
    62 numerous applications
    63 opportunities
    64 order
    65 orders of magnitude
    66 photonic crystal lasers
    67 photonics
    68 photons
    69 plasmonic lasers
    70 point
    71 power consumption
    72 power levels
    73 progress
    74 quantum fluctuations
    75 quantum noise
    76 radiation
    77 reduction
    78 size
    79 size of laser
    80 spontaneous emission
    81 state
    82 time
    83 way
    84 schema:name Ultra-coherent Fano laser based on a bound state in the continuum
    85 schema:pagination 758-764
    86 schema:productId N94cdaf4665214263b1fbf0877f2a4bd6
    87 N9c6abb76f71a4590b63fc7a90abe91e3
    88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140378739
    89 https://doi.org/10.1038/s41566-021-00860-5
    90 schema:sdDatePublished 2022-05-20T07:38
    91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    92 schema:sdPublisher N6c367f83e0c74bf7b49bc3d361c558d4
    93 schema:url https://doi.org/10.1038/s41566-021-00860-5
    94 sgo:license sg:explorer/license/
    95 sgo:sdDataset articles
    96 rdf:type schema:ScholarlyArticle
    97 N29455c3f3ae945fea374b9c333386074 rdf:first sg:person.016642517665.86
    98 rdf:rest Na1dbb141a7f8485687b5dae4049b800c
    99 N3429f1115f7b4a15b201aed477099115 rdf:first sg:person.016207055512.70
    100 rdf:rest N29455c3f3ae945fea374b9c333386074
    101 N531c989241504a029a24cafe2834f1b9 schema:volumeNumber 15
    102 rdf:type schema:PublicationVolume
    103 N6c367f83e0c74bf7b49bc3d361c558d4 schema:name Springer Nature - SN SciGraph project
    104 rdf:type schema:Organization
    105 N94cdaf4665214263b1fbf0877f2a4bd6 schema:name dimensions_id
    106 schema:value pub.1140378739
    107 rdf:type schema:PropertyValue
    108 N9c6abb76f71a4590b63fc7a90abe91e3 schema:name doi
    109 schema:value 10.1038/s41566-021-00860-5
    110 rdf:type schema:PropertyValue
    111 Na1dbb141a7f8485687b5dae4049b800c rdf:first sg:person.0636113010.34
    112 rdf:rest Nba46f0fa38774f878e14c7a799a09a77
    113 Nba46f0fa38774f878e14c7a799a09a77 rdf:first sg:person.010767406335.85
    114 rdf:rest Ndd652aee0fc24d78acc170b9b1d9bfdc
    115 Nc24aeee462714f6cbd1535038c933b02 rdf:first sg:person.01047545773.07
    116 rdf:rest rdf:nil
    117 Ndd652aee0fc24d78acc170b9b1d9bfdc rdf:first sg:person.01136544222.92
    118 rdf:rest Nc24aeee462714f6cbd1535038c933b02
    119 Nec5da5a259f44094a0473eac3f49ad48 schema:issueNumber 10
    120 rdf:type schema:PublicationIssue
    121 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Physical Sciences
    123 rdf:type schema:DefinedTerm
    124 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Optical Physics
    126 rdf:type schema:DefinedTerm
    127 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Other Physical Sciences
    129 rdf:type schema:DefinedTerm
    130 sg:grant.8586935 http://pending.schema.org/fundedItem sg:pub.10.1038/s41566-021-00860-5
    131 rdf:type schema:MonetaryGrant
    132 sg:journal.1037430 schema:issn 1749-4885
    133 1749-4893
    134 schema:name Nature Photonics
    135 schema:publisher Springer Nature
    136 rdf:type schema:Periodical
    137 sg:person.01047545773.07 schema:affiliation grid-institutes:grid.5170.3
    138 schema:familyName Mørk
    139 schema:givenName Jesper
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047545773.07
    141 rdf:type schema:Person
    142 sg:person.010767406335.85 schema:affiliation grid-institutes:grid.5170.3
    143 schema:familyName Semenova
    144 schema:givenName Elizaveta
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010767406335.85
    146 rdf:type schema:Person
    147 sg:person.01136544222.92 schema:affiliation grid-institutes:grid.5170.3
    148 schema:familyName Yvind
    149 schema:givenName Kresten
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136544222.92
    151 rdf:type schema:Person
    152 sg:person.016207055512.70 schema:affiliation grid-institutes:grid.5170.3
    153 schema:familyName Yu
    154 schema:givenName Yi
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016207055512.70
    156 rdf:type schema:Person
    157 sg:person.016642517665.86 schema:affiliation grid-institutes:grid.5170.3
    158 schema:familyName Sakanas
    159 schema:givenName Aurimas
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016642517665.86
    161 rdf:type schema:Person
    162 sg:person.0636113010.34 schema:affiliation grid-institutes:grid.5170.3
    163 schema:familyName Zali
    164 schema:givenName Aref Rasoulzadeh
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636113010.34
    166 rdf:type schema:Person
    167 sg:pub.10.1038/541164a schema:sameAs https://app.dimensions.ai/details/publication/pub.1004829784
    168 https://doi.org/10.1038/541164a
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/natrevmats.2016.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047597334
    171 https://doi.org/10.1038/natrevmats.2016.48
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/nature08364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002908419
    174 https://doi.org/10.1038/nature08364
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/nature10840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049924692
    177 https://doi.org/10.1038/nature10840
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/nature14290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026995369
    180 https://doi.org/10.1038/nature14290
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/nature16454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030858133
    183 https://doi.org/10.1038/nature16454
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/nature20799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037818312
    186 https://doi.org/10.1038/nature20799
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/ncomms8371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044092830
    189 https://doi.org/10.1038/ncomms8371
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/nmat1320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049703325
    192 https://doi.org/10.1038/nmat1320
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nmat1994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040879409
    195 https://doi.org/10.1038/nmat1994
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nmat3873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052985560
    198 https://doi.org/10.1038/nmat3873
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nphoton.2010.177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051823877
    201 https://doi.org/10.1038/nphoton.2010.177
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nphoton.2011.286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042794890
    204 https://doi.org/10.1038/nphoton.2011.286
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nphoton.2016.248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027308371
    207 https://doi.org/10.1038/nphoton.2016.248
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nphoton.2017.142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091409232
    210 https://doi.org/10.1038/nphoton.2017.142
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nphoton.2017.56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084862946
    213 https://doi.org/10.1038/nphoton.2017.56
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nphoton.2017.93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085982498
    216 https://doi.org/10.1038/nphoton.2017.93
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/s41565-018-0245-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106199523
    219 https://doi.org/10.1038/s41565-018-0245-5
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/s41586-020-2764-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131472547
    222 https://doi.org/10.1038/s41586-020-2764-0
    223 rdf:type schema:CreativeWork
    224 grid-institutes:grid.5170.3 schema:alternateName NanoPhoton – Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark
    225 schema:name DTU Fotonik, Technical University of Denmark, Lyngby, Denmark
    226 NanoPhoton – Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark
    227 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...