Ontology type: schema:ScholarlyArticle Open Access: True
2021-08-12
AUTHORSYi Yu, Aurimas Sakanas, Aref Rasoulzadeh Zali, Elizaveta Semenova, Kresten Yvind, Jesper Mørk
ABSTRACTIt is an important challenge to reduce the power consumption and size of lasers, but progress has been impeded by quantum noise overwhelming the coherent radiation at reduced power levels. Thus, despite considerable progress in microscale and nanoscale lasers, such as photonic crystal lasers, metallic lasers and plasmonic lasers, the coherence length remains very limited. Here we show that a bound state in the continuum based on Fano interference can effectively quench quantum fluctuations. Although fragile in nature, this unusual state redistributes photons such that the effect of spontaneous emission is suppressed. Based on this concept, we experimentally demonstrate a microscopic laser with a linewidth that is more than 20 times smaller than existing microscopic lasers and show that further reduction by several orders of magnitude is feasible. These findings pave the way for numerous applications of microscopic lasers and point to new opportunities beyond photonics. More... »
PAGES758-764
http://scigraph.springernature.com/pub.10.1038/s41566-021-00860-5
DOIhttp://dx.doi.org/10.1038/s41566-021-00860-5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1140378739
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Optical Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "NanoPhoton \u2013 Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark",
"id": "http://www.grid.ac/institutes/grid.5170.3",
"name": [
"DTU Fotonik, Technical University of Denmark, Lyngby, Denmark",
"NanoPhoton \u2013 Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark"
],
"type": "Organization"
},
"familyName": "Yu",
"givenName": "Yi",
"id": "sg:person.016207055512.70",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016207055512.70"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "NanoPhoton \u2013 Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark",
"id": "http://www.grid.ac/institutes/grid.5170.3",
"name": [
"DTU Fotonik, Technical University of Denmark, Lyngby, Denmark",
"NanoPhoton \u2013 Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark"
],
"type": "Organization"
},
"familyName": "Sakanas",
"givenName": "Aurimas",
"id": "sg:person.016642517665.86",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016642517665.86"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "NanoPhoton \u2013 Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark",
"id": "http://www.grid.ac/institutes/grid.5170.3",
"name": [
"DTU Fotonik, Technical University of Denmark, Lyngby, Denmark",
"NanoPhoton \u2013 Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark"
],
"type": "Organization"
},
"familyName": "Zali",
"givenName": "Aref Rasoulzadeh",
"id": "sg:person.0636113010.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636113010.34"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "NanoPhoton \u2013 Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark",
"id": "http://www.grid.ac/institutes/grid.5170.3",
"name": [
"DTU Fotonik, Technical University of Denmark, Lyngby, Denmark",
"NanoPhoton \u2013 Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark"
],
"type": "Organization"
},
"familyName": "Semenova",
"givenName": "Elizaveta",
"id": "sg:person.010767406335.85",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010767406335.85"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "NanoPhoton \u2013 Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark",
"id": "http://www.grid.ac/institutes/grid.5170.3",
"name": [
"DTU Fotonik, Technical University of Denmark, Lyngby, Denmark",
"NanoPhoton \u2013 Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark"
],
"type": "Organization"
},
"familyName": "Yvind",
"givenName": "Kresten",
"id": "sg:person.01136544222.92",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136544222.92"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "NanoPhoton \u2013 Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark",
"id": "http://www.grid.ac/institutes/grid.5170.3",
"name": [
"DTU Fotonik, Technical University of Denmark, Lyngby, Denmark",
"NanoPhoton \u2013 Center for Nanophotonics, Technical University of Denmark, Lyngby, Denmark"
],
"type": "Organization"
},
"familyName": "M\u00f8rk",
"givenName": "Jesper",
"id": "sg:person.01047545773.07",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047545773.07"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/nmat1320",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049703325",
"https://doi.org/10.1038/nmat1320"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nphoton.2010.177",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051823877",
"https://doi.org/10.1038/nphoton.2010.177"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nphoton.2017.142",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091409232",
"https://doi.org/10.1038/nphoton.2017.142"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nphoton.2017.93",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085982498",
"https://doi.org/10.1038/nphoton.2017.93"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmat1994",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040879409",
"https://doi.org/10.1038/nmat1994"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmat3873",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052985560",
"https://doi.org/10.1038/nmat3873"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ncomms8371",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044092830",
"https://doi.org/10.1038/ncomms8371"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41565-018-0245-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1106199523",
"https://doi.org/10.1038/s41565-018-0245-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/natrevmats.2016.48",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047597334",
"https://doi.org/10.1038/natrevmats.2016.48"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature14290",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026995369",
"https://doi.org/10.1038/nature14290"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nphoton.2016.248",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027308371",
"https://doi.org/10.1038/nphoton.2016.248"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature10840",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049924692",
"https://doi.org/10.1038/nature10840"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nphoton.2017.56",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084862946",
"https://doi.org/10.1038/nphoton.2017.56"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41586-020-2764-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1131472547",
"https://doi.org/10.1038/s41586-020-2764-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature20799",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037818312",
"https://doi.org/10.1038/nature20799"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature08364",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002908419",
"https://doi.org/10.1038/nature08364"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nphoton.2011.286",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042794890",
"https://doi.org/10.1038/nphoton.2011.286"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/541164a",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004829784",
"https://doi.org/10.1038/541164a"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature16454",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030858133",
"https://doi.org/10.1038/nature16454"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-08-12",
"datePublishedReg": "2021-08-12",
"description": "It is an important challenge to reduce the power consumption and size of lasers, but progress has been impeded by quantum noise overwhelming the coherent radiation at reduced power levels. Thus, despite considerable progress in microscale and nanoscale lasers, such as photonic crystal lasers, metallic lasers and plasmonic lasers, the coherence length remains very limited. Here we show that a bound state in the continuum based on Fano interference can effectively quench quantum fluctuations. Although fragile in nature, this unusual state redistributes photons such that the effect of spontaneous emission is suppressed. Based on this concept, we experimentally demonstrate a microscopic laser with a linewidth that is more than 20 times smaller than existing microscopic lasers and show that further reduction by several orders of magnitude is feasible. These findings pave the way for numerous applications of microscopic lasers and point to new opportunities beyond photonics.",
"genre": "article",
"id": "sg:pub.10.1038/s41566-021-00860-5",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.8586935",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1037430",
"issn": [
"1749-4885",
"1749-4893"
],
"name": "Nature Photonics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "10",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "15"
}
],
"keywords": [
"microscopic lasers",
"photonic crystal lasers",
"size of laser",
"Fano laser",
"coherent radiation",
"nanoscale lasers",
"plasmonic lasers",
"crystal laser",
"quantum noise",
"quantum fluctuations",
"spontaneous emission",
"Fano interference",
"coherence length",
"laser",
"orders of magnitude",
"power levels",
"photonics",
"photons",
"linewidth",
"continuum",
"numerous applications",
"radiation",
"emission",
"state",
"fluctuations",
"new opportunities",
"magnitude",
"power consumption",
"considerable progress",
"noise",
"microscale",
"progress",
"interference",
"applications",
"nature",
"length",
"order",
"further reduction",
"size",
"effect",
"time",
"important challenge",
"way",
"point",
"concept",
"levels",
"reduction",
"opportunities",
"challenges",
"consumption",
"findings"
],
"name": "Ultra-coherent Fano laser based on a bound state in the continuum",
"pagination": "758-764",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1140378739"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/s41566-021-00860-5"
]
}
],
"sameAs": [
"https://doi.org/10.1038/s41566-021-00860-5",
"https://app.dimensions.ai/details/publication/pub.1140378739"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:38",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_892.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/s41566-021-00860-5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41566-021-00860-5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41566-021-00860-5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41566-021-00860-5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41566-021-00860-5'
This table displays all metadata directly associated to this object as RDF triples.
227 TRIPLES
22 PREDICATES
96 URIs
68 LITERALS
6 BLANK NODES