A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Han Lin, Björn C. P. Sturmberg, Keng-Te Lin, Yunyi Yang, Xiaorui Zheng, Teck K. Chong, C. Martijn de Sterke, Baohua Jia

ABSTRACT

Broadband strong light absorption of unpolarized light over a wide range of angles in a large-area ultrathin film is critical for applications such as photovoltaics, photodetectors, thermal emitters and optical modulators. Despite long-standing efforts in design and fabrication, it has been challenging to achieve all these desired properties simultaneously. We experimentally demonstrate a 12.5 cm2, 90-nm-thick graphene metamaterial with approximately 85% absorptivity of unpolarized, visible and near-infrared light covering almost the entire solar spectrum (300–2,500 nm). The metamaterial consists of alternating graphene and dielectric layers; a grating couples the light into waveguide modes to achieve broadband absorption over incident angles up to 60°. The very broad spectral and angular responses of the absorber are ideal for solar thermal applications, as we illustrate by showing heating to 160 °C in natural sunlight. These devices open a novel approach to applications of strongly absorbing large-area photonic devices based on two-dimensional materials. Eighty-five per cent absorptivity of unpolarized light over the wavelength range 300–2,500 nm is realized in a 90-nm-thick, 12.5 cm2 metamaterial. More... »

PAGES

270-276

References to SciGraph publications

  • 2015-12. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings in SCIENTIFIC REPORTS
  • 2015-05. Critical coupling with graphene-based hyperbolic metamaterials in SCIENTIFIC REPORTS
  • 2016-06. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination in NATURE PHOTONICS
  • 2015-12. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing in NATURE COMMUNICATIONS
  • 2011-06. Numerical study of metamaterial absorber and extending absorbance bandwidth based on multi-square patches in THE EUROPEAN PHYSICAL JOURNAL B
  • 2011-09. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers in NATURE COMMUNICATIONS
  • 2016-02-04. Realization of mid-infrared graphene hyperbolic metamaterials in NATURE COMMUNICATIONS
  • 2016-01. Harnessing structural darkness in the visible and infrared wavelengths for a new source of light in NATURE NANOTECHNOLOGY
  • 2014-10. Photodetectors based on graphene, other two-dimensional materials and hybrid systems in NATURE NANOTECHNOLOGY
  • 2012-01. Ultrathin and lightweight organic solar cells with high flexibility in NATURE COMMUNICATIONS
  • 2016-03. Angle-selective perfect absorption with two-dimensional materials in LIGHT: SCIENCE & APPLICATIONS
  • 2014-12. Solar steam generation by heat localization in NATURE COMMUNICATIONS
  • 2012-12. Tunable broadband plasmonic perfect absorber at visible frequency in APPLIED PHYSICS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41566-019-0389-3

    DOI

    http://dx.doi.org/10.1038/s41566-019-0389-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112849457


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Swinburne University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.1027.4", 
              "name": [
                "Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Han", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Sydney", 
              "id": "https://www.grid.ac/institutes/grid.1013.3", 
              "name": [
                "IPOS, School of Physics, University of Sydney, Sydney, New South Wales, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sturmberg", 
            "givenName": "Bj\u00f6rn C. P.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Swinburne University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.1027.4", 
              "name": [
                "Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Keng-Te", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Swinburne University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.1027.4", 
              "name": [
                "Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Yunyi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Swinburne University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.1027.4", 
              "name": [
                "Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zheng", 
            "givenName": "Xiaorui", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Australian National University", 
              "id": "https://www.grid.ac/institutes/grid.1001.0", 
              "name": [
                "Centre for Sustainable Energy Systems, Research School of Engineering, Australian National University, Canberra, Australian Capital Territory, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chong", 
            "givenName": "Teck K.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Sydney", 
              "id": "https://www.grid.ac/institutes/grid.1013.3", 
              "name": [
                "IPOS, School of Physics, University of Sydney, Sydney, New South Wales, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "de Sterke", 
            "givenName": "C. Martijn", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Swinburne University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.1027.4", 
              "name": [
                "Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jia", 
            "givenName": "Baohua", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00339-012-7344-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000943264", 
              "https://doi.org/10.1007/s00339-012-7344-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2011-20115-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001872087", 
              "https://doi.org/10.1140/epjb/e2011-20115-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cpc.2015.12.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001964439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0900155106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002427380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep15137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002879239", 
              "https://doi.org/10.1038/srep15137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/lpor.201400157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004456397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.85.115438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004653483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.85.115438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004653483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.19960080806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004784021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201304681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007098253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008640603", 
              "https://doi.org/10.1038/nnano.2014.215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0927-0248(01)00083-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009278047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/smll.201101068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010726002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms10568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012996270", 
              "https://doi.org/10.1038/ncomms10568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1156965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019630779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020634224", 
              "https://doi.org/10.1038/ncomms9433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adom.201300401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021683526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.infrared.2006.05.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021951413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.205401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022676624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.205401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022676624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/rs024i001p00013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024459307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.047401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025530432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.047401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025530432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1772", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026123690", 
              "https://doi.org/10.1038/ncomms1772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.207402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029858791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.207402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029858791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1528", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031039656", 
              "https://doi.org/10.1038/ncomms1528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2016.75", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036017477", 
              "https://doi.org/10.1038/nphoton.2016.75"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4939969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038819702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1613031113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043524023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.81.155413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043861615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.81.155413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043861615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.79.245127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044101056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.79.245127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044101056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adom.201300317", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045871516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2015.228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048012379", 
              "https://doi.org/10.1038/nnano.2015.228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nanoen.2016.12.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048028949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl501090w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048913500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms5449", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049186682", 
              "https://doi.org/10.1038/ncomms5449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/lsa.2016.52", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051300763", 
              "https://doi.org/10.1038/lsa.2016.52"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep05483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051462167", 
              "https://doi.org/10.1038/srep05483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201102646", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053033813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja01539a017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055805656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl503104n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056221006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ph500168b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056289988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1592614", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057723726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3663873", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057994848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/2040-8978/15/11/114003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059179933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/josaa.29.000817", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065163404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.16.006146", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065187519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/optica.3.000556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065248215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2961/jlmn.2010.03.0001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070927429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1613081114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074228505"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/solr.201770126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090385362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201702590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091228187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201704107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092149391"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "Broadband strong light absorption of unpolarized light over a wide range of angles in a large-area ultrathin film is critical for applications such as photovoltaics, photodetectors, thermal emitters and optical modulators. Despite long-standing efforts in design and fabrication, it has been challenging to achieve all these desired properties simultaneously. We experimentally demonstrate a 12.5 cm2, 90-nm-thick graphene metamaterial with approximately 85% absorptivity of unpolarized, visible and near-infrared light covering almost the entire solar spectrum (300\u20132,500 nm). The metamaterial consists of alternating graphene and dielectric layers; a grating couples the light into waveguide modes to achieve broadband absorption over incident angles up to 60\u00b0. The very broad spectral and angular responses of the absorber are ideal for solar thermal applications, as we illustrate by showing heating to 160 \u00b0C in natural sunlight. These devices open a novel approach to applications of strongly absorbing large-area photonic devices based on two-dimensional materials. Eighty-five per cent absorptivity of unpolarized light over the wavelength range 300\u20132,500 nm is realized in a 90-nm-thick, 12.5 cm2 metamaterial.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41566-019-0389-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7849464", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1037430", 
            "issn": [
              "1749-4885", 
              "1749-4893"
            ], 
            "name": "Nature Photonics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "name": "A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light", 
        "pagination": "270-276", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0097901b89d92aeb44c4d95595852631e3eadcbeeeab0d3cef82838db042085e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41566-019-0389-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112849457"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41566-019-0389-3", 
          "https://app.dimensions.ai/details/publication/pub.1112849457"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72836_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41566-019-0389-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41566-019-0389-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41566-019-0389-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41566-019-0389-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41566-019-0389-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    273 TRIPLES      21 PREDICATES      77 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41566-019-0389-3 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Ncba986bb8a754760a18555916bd8e396
    4 schema:citation sg:pub.10.1007/s00339-012-7344-1
    5 sg:pub.10.1038/lsa.2016.52
    6 sg:pub.10.1038/ncomms10568
    7 sg:pub.10.1038/ncomms1528
    8 sg:pub.10.1038/ncomms1772
    9 sg:pub.10.1038/ncomms5449
    10 sg:pub.10.1038/ncomms9433
    11 sg:pub.10.1038/nnano.2014.215
    12 sg:pub.10.1038/nnano.2015.228
    13 sg:pub.10.1038/nphoton.2016.75
    14 sg:pub.10.1038/srep05483
    15 sg:pub.10.1038/srep15137
    16 sg:pub.10.1140/epjb/e2011-20115-1
    17 https://doi.org/10.1002/adma.19960080806
    18 https://doi.org/10.1002/adma.201102646
    19 https://doi.org/10.1002/adma.201304681
    20 https://doi.org/10.1002/adma.201702590
    21 https://doi.org/10.1002/adma.201704107
    22 https://doi.org/10.1002/adom.201300317
    23 https://doi.org/10.1002/adom.201300401
    24 https://doi.org/10.1002/lpor.201400157
    25 https://doi.org/10.1002/smll.201101068
    26 https://doi.org/10.1002/solr.201770126
    27 https://doi.org/10.1016/j.cpc.2015.12.022
    28 https://doi.org/10.1016/j.infrared.2006.05.002
    29 https://doi.org/10.1016/j.nanoen.2016.12.031
    30 https://doi.org/10.1016/s0927-0248(01)00083-6
    31 https://doi.org/10.1021/ja01539a017
    32 https://doi.org/10.1021/nl501090w
    33 https://doi.org/10.1021/nl503104n
    34 https://doi.org/10.1021/ph500168b
    35 https://doi.org/10.1029/rs024i001p00013
    36 https://doi.org/10.1063/1.1592614
    37 https://doi.org/10.1063/1.3663873
    38 https://doi.org/10.1063/1.4939969
    39 https://doi.org/10.1073/pnas.0900155106
    40 https://doi.org/10.1073/pnas.1613031113
    41 https://doi.org/10.1073/pnas.1613081114
    42 https://doi.org/10.1088/2040-8978/15/11/114003
    43 https://doi.org/10.1103/physrevb.79.245127
    44 https://doi.org/10.1103/physrevb.81.155413
    45 https://doi.org/10.1103/physrevb.85.115438
    46 https://doi.org/10.1103/physrevb.86.205401
    47 https://doi.org/10.1103/physrevlett.100.207402
    48 https://doi.org/10.1103/physrevlett.108.047401
    49 https://doi.org/10.1126/science.1156965
    50 https://doi.org/10.1364/josaa.29.000817
    51 https://doi.org/10.1364/oe.16.006146
    52 https://doi.org/10.1364/optica.3.000556
    53 https://doi.org/10.2961/jlmn.2010.03.0001
    54 schema:datePublished 2019-04
    55 schema:datePublishedReg 2019-04-01
    56 schema:description Broadband strong light absorption of unpolarized light over a wide range of angles in a large-area ultrathin film is critical for applications such as photovoltaics, photodetectors, thermal emitters and optical modulators. Despite long-standing efforts in design and fabrication, it has been challenging to achieve all these desired properties simultaneously. We experimentally demonstrate a 12.5 cm2, 90-nm-thick graphene metamaterial with approximately 85% absorptivity of unpolarized, visible and near-infrared light covering almost the entire solar spectrum (300–2,500 nm). The metamaterial consists of alternating graphene and dielectric layers; a grating couples the light into waveguide modes to achieve broadband absorption over incident angles up to 60°. The very broad spectral and angular responses of the absorber are ideal for solar thermal applications, as we illustrate by showing heating to 160 °C in natural sunlight. These devices open a novel approach to applications of strongly absorbing large-area photonic devices based on two-dimensional materials. Eighty-five per cent absorptivity of unpolarized light over the wavelength range 300–2,500 nm is realized in a 90-nm-thick, 12.5 cm2 metamaterial.
    57 schema:genre research_article
    58 schema:inLanguage en
    59 schema:isAccessibleForFree false
    60 schema:isPartOf N8d743b9c7ecc4375af90e076a754c732
    61 Nb77315e8af2b41a4a420e7181202b7bb
    62 sg:journal.1037430
    63 schema:name A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light
    64 schema:pagination 270-276
    65 schema:productId N10d9a3891af44281b6df0c083a4c8fcf
    66 Ndfd0852e676d485291f4c59719bdcdd9
    67 Nf0876b6853504d44abb2d8d848bde585
    68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112849457
    69 https://doi.org/10.1038/s41566-019-0389-3
    70 schema:sdDatePublished 2019-04-11T12:52
    71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    72 schema:sdPublisher N210c0f8a28144b39b8654a90a9539d5d
    73 schema:url https://www.nature.com/articles/s41566-019-0389-3
    74 sgo:license sg:explorer/license/
    75 sgo:sdDataset articles
    76 rdf:type schema:ScholarlyArticle
    77 N0b5c387af5bd48d18f94109963ef7f00 schema:affiliation https://www.grid.ac/institutes/grid.1001.0
    78 schema:familyName Chong
    79 schema:givenName Teck K.
    80 rdf:type schema:Person
    81 N10d9a3891af44281b6df0c083a4c8fcf schema:name dimensions_id
    82 schema:value pub.1112849457
    83 rdf:type schema:PropertyValue
    84 N132280efc1674fbfb0f799450c244571 schema:affiliation https://www.grid.ac/institutes/grid.1013.3
    85 schema:familyName Sturmberg
    86 schema:givenName Björn C. P.
    87 rdf:type schema:Person
    88 N14583c7b84794a2595214e66852c840d schema:affiliation https://www.grid.ac/institutes/grid.1027.4
    89 schema:familyName Lin
    90 schema:givenName Han
    91 rdf:type schema:Person
    92 N15921a1dbe744168a48db4ba13e58fc6 rdf:first N132280efc1674fbfb0f799450c244571
    93 rdf:rest Nd76713743ce141d886d8c3d540d32996
    94 N210c0f8a28144b39b8654a90a9539d5d schema:name Springer Nature - SN SciGraph project
    95 rdf:type schema:Organization
    96 N56035b6887df49dba33207815bfac96f rdf:first N7d5d13bee6434f5b97e440c0e175b945
    97 rdf:rest Nc2ee5ddaef694f8eb5678b8f63ab2148
    98 N5aad4cbc971c46cbb23f8ebb56f3308d rdf:first N7f8583a01ba6425b9bf32ab91fb785f0
    99 rdf:rest N56035b6887df49dba33207815bfac96f
    100 N7d5d13bee6434f5b97e440c0e175b945 schema:affiliation https://www.grid.ac/institutes/grid.1027.4
    101 schema:familyName Zheng
    102 schema:givenName Xiaorui
    103 rdf:type schema:Person
    104 N7f8583a01ba6425b9bf32ab91fb785f0 schema:affiliation https://www.grid.ac/institutes/grid.1027.4
    105 schema:familyName Yang
    106 schema:givenName Yunyi
    107 rdf:type schema:Person
    108 N8d743b9c7ecc4375af90e076a754c732 schema:issueNumber 4
    109 rdf:type schema:PublicationIssue
    110 N9164877cb6184213b5a7459a1ae5fedd schema:affiliation https://www.grid.ac/institutes/grid.1013.3
    111 schema:familyName de Sterke
    112 schema:givenName C. Martijn
    113 rdf:type schema:Person
    114 Na4f9b541a1ff4b10a566182f62528212 schema:affiliation https://www.grid.ac/institutes/grid.1027.4
    115 schema:familyName Lin
    116 schema:givenName Keng-Te
    117 rdf:type schema:Person
    118 Nb00446bfd81444878696c87026764889 schema:affiliation https://www.grid.ac/institutes/grid.1027.4
    119 schema:familyName Jia
    120 schema:givenName Baohua
    121 rdf:type schema:Person
    122 Nb77315e8af2b41a4a420e7181202b7bb schema:volumeNumber 13
    123 rdf:type schema:PublicationVolume
    124 Nbb88569f51eb4417ab683fb96a9c7d73 rdf:first Nb00446bfd81444878696c87026764889
    125 rdf:rest rdf:nil
    126 Nc2ee5ddaef694f8eb5678b8f63ab2148 rdf:first N0b5c387af5bd48d18f94109963ef7f00
    127 rdf:rest Nf7ec23331157446194f938826cdaca5d
    128 Ncba986bb8a754760a18555916bd8e396 rdf:first N14583c7b84794a2595214e66852c840d
    129 rdf:rest N15921a1dbe744168a48db4ba13e58fc6
    130 Nd76713743ce141d886d8c3d540d32996 rdf:first Na4f9b541a1ff4b10a566182f62528212
    131 rdf:rest N5aad4cbc971c46cbb23f8ebb56f3308d
    132 Ndfd0852e676d485291f4c59719bdcdd9 schema:name doi
    133 schema:value 10.1038/s41566-019-0389-3
    134 rdf:type schema:PropertyValue
    135 Nf0876b6853504d44abb2d8d848bde585 schema:name readcube_id
    136 schema:value 0097901b89d92aeb44c4d95595852631e3eadcbeeeab0d3cef82838db042085e
    137 rdf:type schema:PropertyValue
    138 Nf7ec23331157446194f938826cdaca5d rdf:first N9164877cb6184213b5a7459a1ae5fedd
    139 rdf:rest Nbb88569f51eb4417ab683fb96a9c7d73
    140 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Engineering
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Materials Engineering
    145 rdf:type schema:DefinedTerm
    146 sg:grant.7849464 http://pending.schema.org/fundedItem sg:pub.10.1038/s41566-019-0389-3
    147 rdf:type schema:MonetaryGrant
    148 sg:journal.1037430 schema:issn 1749-4885
    149 1749-4893
    150 schema:name Nature Photonics
    151 rdf:type schema:Periodical
    152 sg:pub.10.1007/s00339-012-7344-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000943264
    153 https://doi.org/10.1007/s00339-012-7344-1
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1038/lsa.2016.52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051300763
    156 https://doi.org/10.1038/lsa.2016.52
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1038/ncomms10568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012996270
    159 https://doi.org/10.1038/ncomms10568
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1038/ncomms1528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031039656
    162 https://doi.org/10.1038/ncomms1528
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/ncomms1772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026123690
    165 https://doi.org/10.1038/ncomms1772
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/ncomms5449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049186682
    168 https://doi.org/10.1038/ncomms5449
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/ncomms9433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020634224
    171 https://doi.org/10.1038/ncomms9433
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/nnano.2014.215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008640603
    174 https://doi.org/10.1038/nnano.2014.215
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/nnano.2015.228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048012379
    177 https://doi.org/10.1038/nnano.2015.228
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/nphoton.2016.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036017477
    180 https://doi.org/10.1038/nphoton.2016.75
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/srep05483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051462167
    183 https://doi.org/10.1038/srep05483
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/srep15137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002879239
    186 https://doi.org/10.1038/srep15137
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1140/epjb/e2011-20115-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001872087
    189 https://doi.org/10.1140/epjb/e2011-20115-1
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1002/adma.19960080806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004784021
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1002/adma.201102646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053033813
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1002/adma.201304681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007098253
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1002/adma.201702590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091228187
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1002/adma.201704107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092149391
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1002/adom.201300317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045871516
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1002/adom.201300401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021683526
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1002/lpor.201400157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004456397
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1002/smll.201101068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010726002
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1002/solr.201770126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090385362
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1016/j.cpc.2015.12.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001964439
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1016/j.infrared.2006.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021951413
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1016/j.nanoen.2016.12.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048028949
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1016/s0927-0248(01)00083-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009278047
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1021/ja01539a017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055805656
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1021/nl501090w schema:sameAs https://app.dimensions.ai/details/publication/pub.1048913500
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1021/nl503104n schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221006
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1021/ph500168b schema:sameAs https://app.dimensions.ai/details/publication/pub.1056289988
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1029/rs024i001p00013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024459307
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1063/1.1592614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057723726
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1063/1.3663873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057994848
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1063/1.4939969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038819702
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1073/pnas.0900155106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002427380
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1073/pnas.1613031113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043524023
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1073/pnas.1613081114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074228505
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1088/2040-8978/15/11/114003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059179933
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1103/physrevb.79.245127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044101056
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1103/physrevb.81.155413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043861615
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1103/physrevb.85.115438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004653483
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1103/physrevb.86.205401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022676624
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1103/physrevlett.100.207402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029858791
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1103/physrevlett.108.047401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025530432
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1126/science.1156965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019630779
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1364/josaa.29.000817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065163404
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1364/oe.16.006146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065187519
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1364/optica.3.000556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065248215
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.2961/jlmn.2010.03.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070927429
    264 rdf:type schema:CreativeWork
    265 https://www.grid.ac/institutes/grid.1001.0 schema:alternateName Australian National University
    266 schema:name Centre for Sustainable Energy Systems, Research School of Engineering, Australian National University, Canberra, Australian Capital Territory, Australia
    267 rdf:type schema:Organization
    268 https://www.grid.ac/institutes/grid.1013.3 schema:alternateName University of Sydney
    269 schema:name IPOS, School of Physics, University of Sydney, Sydney, New South Wales, Australia
    270 rdf:type schema:Organization
    271 https://www.grid.ac/institutes/grid.1027.4 schema:alternateName Swinburne University of Technology
    272 schema:name Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
    273 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...