Electron–hole liquid in a van der Waals heterostructure photocell at room temperature View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Trevor B. Arp, Dennis Pleskot, Vivek Aji, Nathaniel M. Gabor

ABSTRACT

In semiconductors, photo-excited charge carriers exist as a gas of electrons and holes, bound electron–hole pairs (excitons), biexcitons and trions1–4. At sufficiently high densities, the non-equilibrium system of electrons (e−) and holes (h+) may merge into an electronic liquid droplet5–10. Here, we report on the electron–hole liquid in ultrathin MoTe2 photocells revealed through multi-parameter dynamic photoresponse microscopy (MPDPM). By combining rich visualization with comprehensive analysis of very large data sets acquired through MPDPM, we find that ultrafast laser excitation at a graphene–MoTe2–graphene interface leads to the abrupt formation of ring-like spatial patterns in the photocurrent response as a function of increasing optical power at T = 297 K. The sudden onset to these patterns, together with extreme sublinear power dependence and picosecond-scale photocurrent dynamics, provide strong evidence for the formation of a two-dimensional electron–hole liquid droplet. The electron–hole liquid, which features a macroscopic population of correlated electrons and holes, may offer a path to room-temperature optoelectronic devices that harness collective electronic phenomena. Photoexcited charge carriers are typically approximated as a gas, but now it is shown that electrons and holes can behave as a liquid in MoTe2 photocells. More... »

PAGES

245-250

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41566-019-0349-y

DOI

http://dx.doi.org/10.1038/s41566-019-0349-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111917861


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Riverside", 
          "id": "https://www.grid.ac/institutes/grid.266097.c", 
          "name": [
            "Department of Physics and Astronomy, University of California, Riverside, Riverside, CA, USA", 
            "Laboratory of Quantum Materials Optoelectronics, University of California, Riverside, Riverside, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arp", 
        "givenName": "Trevor B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Riverside", 
          "id": "https://www.grid.ac/institutes/grid.266097.c", 
          "name": [
            "Laboratory of Quantum Materials Optoelectronics, University of California, Riverside, Riverside, CA, USA", 
            "Department of Materials Science and Engineering, University of California, Riverside, Riverside, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pleskot", 
        "givenName": "Dennis", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Riverside", 
          "id": "https://www.grid.ac/institutes/grid.266097.c", 
          "name": [
            "Department of Physics and Astronomy, University of California, Riverside, Riverside, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aji", 
        "givenName": "Vivek", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Canadian Institute for Advanced Research", 
          "id": "https://www.grid.ac/institutes/grid.440050.5", 
          "name": [
            "Department of Physics and Astronomy, University of California, Riverside, Riverside, CA, USA", 
            "Laboratory of Quantum Materials Optoelectronics, University of California, Riverside, Riverside, CA, USA", 
            "Department of Materials Science and Engineering, University of California, Riverside, Riverside, CA, USA", 
            "Canadian Institute for Advanced Research, Toronto, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gabor", 
        "givenName": "Nathaniel M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/adom.201600290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004165465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4967232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007468072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009145791", 
          "https://doi.org/10.1038/nmat3505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2053-1583/1/1/011002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010336747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms12174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013982235", 
          "https://doi.org/10.1038/ncomms12174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.087404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014927927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.087404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014927927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015222299", 
          "https://doi.org/10.1038/nature12994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026763480", 
          "https://doi.org/10.1038/ncomms9831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031778253", 
          "https://doi.org/10.1038/nphys3620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4941996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037106749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl502557g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039223016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.076802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041070857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.076802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041070857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2015.104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041485051", 
          "https://doi.org/10.1038/nphoton.2015.104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/2/6/310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041755889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b00748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041884048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043030934", 
          "https://doi.org/10.1038/nature01676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043030934", 
          "https://doi.org/10.1038/nature01676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00107518608211022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044376239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047021007", 
          "https://doi.org/10.1038/nmat1710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047021007", 
          "https://doi.org/10.1038/nmat1710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2015.227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051070900", 
          "https://doi.org/10.1038/nnano.2015.227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051148621", 
          "https://doi.org/10.1038/nmat4061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b703983m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053287600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl5021975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056220908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl5045007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1464-4258/5/1/201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059139872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.085429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060651883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.085429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060651883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.1.450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060752337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.1.450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060752337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.1752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.1752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.189.4207.955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062511979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsami.6b14483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079398361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4977953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084151107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/cleo_qels.2016.ftu4l.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098998405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.7b04377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099641400"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "In semiconductors, photo-excited charge carriers exist as a gas of electrons and holes, bound electron\u2013hole pairs (excitons), biexcitons and trions1\u20134. At sufficiently high densities, the non-equilibrium system of electrons (e\u2212) and holes (h+) may merge into an electronic liquid droplet5\u201310. Here, we report on the electron\u2013hole liquid in ultrathin MoTe2 photocells revealed through multi-parameter dynamic photoresponse microscopy (MPDPM). By combining rich visualization with comprehensive analysis of very large data sets acquired through MPDPM, we find that ultrafast laser excitation at a graphene\u2013MoTe2\u2013graphene interface leads to the abrupt formation of ring-like spatial patterns in the photocurrent response as a function of increasing optical power at T = 297 K. The sudden onset to these patterns, together with extreme sublinear power dependence and picosecond-scale photocurrent dynamics, provide strong evidence for the formation of a two-dimensional electron\u2013hole liquid droplet. The electron\u2013hole liquid, which features a macroscopic population of correlated electrons and holes, may offer a path to room-temperature optoelectronic devices that harness collective electronic phenomena. Photoexcited charge carriers are typically approximated as a gas, but now it is shown that electrons and holes can behave as a liquid in MoTe2 photocells.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41566-019-0349-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4320162", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6542942", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4312323", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5497543", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037430", 
        "issn": [
          "1749-4885", 
          "1749-4893"
        ], 
        "name": "Nature Photonics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Electron\u2013hole liquid in a van der Waals heterostructure photocell at room temperature", 
    "pagination": "245-250", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e2b987681db5187bc78f71dbcc418cfe2c8b24fc047e8aeaf6030e3efa64233d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41566-019-0349-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111917861"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41566-019-0349-y", 
      "https://app.dimensions.ai/details/publication/pub.1111917861"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72862_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41566-019-0349-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41566-019-0349-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41566-019-0349-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41566-019-0349-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41566-019-0349-y'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41566-019-0349-y schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nc813ff6a5de64604b8d90f7065d75320
4 schema:citation sg:pub.10.1038/nature01676
5 sg:pub.10.1038/nature12994
6 sg:pub.10.1038/ncomms12174
7 sg:pub.10.1038/ncomms9831
8 sg:pub.10.1038/nmat1710
9 sg:pub.10.1038/nmat3505
10 sg:pub.10.1038/nmat4061
11 sg:pub.10.1038/nnano.2015.227
12 sg:pub.10.1038/nphoton.2015.104
13 sg:pub.10.1038/nphys3620
14 https://doi.org/10.1002/adom.201600290
15 https://doi.org/10.1021/acs.nanolett.6b00748
16 https://doi.org/10.1021/acs.nanolett.7b04377
17 https://doi.org/10.1021/acsami.6b14483
18 https://doi.org/10.1021/nl5021975
19 https://doi.org/10.1021/nl502557g
20 https://doi.org/10.1021/nl5045007
21 https://doi.org/10.1039/b703983m
22 https://doi.org/10.1063/1.4941996
23 https://doi.org/10.1063/1.4967232
24 https://doi.org/10.1063/1.4977953
25 https://doi.org/10.1080/00107518608211022
26 https://doi.org/10.1088/0022-3727/2/6/310
27 https://doi.org/10.1088/1464-4258/5/1/201
28 https://doi.org/10.1088/2053-1583/1/1/011002
29 https://doi.org/10.1103/physrevb.94.085429
30 https://doi.org/10.1103/physrevlett.1.450
31 https://doi.org/10.1103/physrevlett.108.087404
32 https://doi.org/10.1103/physrevlett.113.076802
33 https://doi.org/10.1103/physrevlett.71.1752
34 https://doi.org/10.1126/science.189.4207.955
35 https://doi.org/10.1364/cleo_qels.2016.ftu4l.6
36 schema:datePublished 2019-04
37 schema:datePublishedReg 2019-04-01
38 schema:description In semiconductors, photo-excited charge carriers exist as a gas of electrons and holes, bound electron–hole pairs (excitons), biexcitons and trions1–4. At sufficiently high densities, the non-equilibrium system of electrons (e−) and holes (h+) may merge into an electronic liquid droplet5–10. Here, we report on the electron–hole liquid in ultrathin MoTe2 photocells revealed through multi-parameter dynamic photoresponse microscopy (MPDPM). By combining rich visualization with comprehensive analysis of very large data sets acquired through MPDPM, we find that ultrafast laser excitation at a graphene–MoTe2–graphene interface leads to the abrupt formation of ring-like spatial patterns in the photocurrent response as a function of increasing optical power at T = 297 K. The sudden onset to these patterns, together with extreme sublinear power dependence and picosecond-scale photocurrent dynamics, provide strong evidence for the formation of a two-dimensional electron–hole liquid droplet. The electron–hole liquid, which features a macroscopic population of correlated electrons and holes, may offer a path to room-temperature optoelectronic devices that harness collective electronic phenomena. Photoexcited charge carriers are typically approximated as a gas, but now it is shown that electrons and holes can behave as a liquid in MoTe2 photocells.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N4e15f510e6634ae988a7f17f89c66beb
43 N8e5f8de78e17449da89640ce62527ab9
44 sg:journal.1037430
45 schema:name Electron–hole liquid in a van der Waals heterostructure photocell at room temperature
46 schema:pagination 245-250
47 schema:productId N268402ee83b4486198627923eb3b3975
48 N4fd3a968500a44d3a6f774411db1ae7b
49 Nfde13bc837914d53b5e64c6fde0c4966
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111917861
51 https://doi.org/10.1038/s41566-019-0349-y
52 schema:sdDatePublished 2019-04-11T12:54
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N7f75b616f3d94fc2937ed216395f6cee
55 schema:url https://www.nature.com/articles/s41566-019-0349-y
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N091a0c1c29b746adb2ab07af0351eb57 rdf:first N7b87579b9559431cb2c6664a3ca01e78
60 rdf:rest rdf:nil
61 N0b890d6693d948e8a4e755da47a475ff rdf:first N66e58f9db4d5416aae2167c643ce3e4b
62 rdf:rest Nf338b8f61d1e48d4b2bf7188d2d37f7e
63 N268402ee83b4486198627923eb3b3975 schema:name doi
64 schema:value 10.1038/s41566-019-0349-y
65 rdf:type schema:PropertyValue
66 N4e15f510e6634ae988a7f17f89c66beb schema:volumeNumber 13
67 rdf:type schema:PublicationVolume
68 N4fd3a968500a44d3a6f774411db1ae7b schema:name readcube_id
69 schema:value e2b987681db5187bc78f71dbcc418cfe2c8b24fc047e8aeaf6030e3efa64233d
70 rdf:type schema:PropertyValue
71 N50c9afa320db4fb0b03102cf09e4a476 schema:affiliation https://www.grid.ac/institutes/grid.266097.c
72 schema:familyName Aji
73 schema:givenName Vivek
74 rdf:type schema:Person
75 N66e58f9db4d5416aae2167c643ce3e4b schema:affiliation https://www.grid.ac/institutes/grid.266097.c
76 schema:familyName Pleskot
77 schema:givenName Dennis
78 rdf:type schema:Person
79 N7b87579b9559431cb2c6664a3ca01e78 schema:affiliation https://www.grid.ac/institutes/grid.440050.5
80 schema:familyName Gabor
81 schema:givenName Nathaniel M.
82 rdf:type schema:Person
83 N7f75b616f3d94fc2937ed216395f6cee schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N8e5f8de78e17449da89640ce62527ab9 schema:issueNumber 4
86 rdf:type schema:PublicationIssue
87 Nc5bbbae49f8f49518e5c881a09411a7f schema:affiliation https://www.grid.ac/institutes/grid.266097.c
88 schema:familyName Arp
89 schema:givenName Trevor B.
90 rdf:type schema:Person
91 Nc813ff6a5de64604b8d90f7065d75320 rdf:first Nc5bbbae49f8f49518e5c881a09411a7f
92 rdf:rest N0b890d6693d948e8a4e755da47a475ff
93 Nf338b8f61d1e48d4b2bf7188d2d37f7e rdf:first N50c9afa320db4fb0b03102cf09e4a476
94 rdf:rest N091a0c1c29b746adb2ab07af0351eb57
95 Nfde13bc837914d53b5e64c6fde0c4966 schema:name dimensions_id
96 schema:value pub.1111917861
97 rdf:type schema:PropertyValue
98 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
99 schema:name Physical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
102 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
103 rdf:type schema:DefinedTerm
104 sg:grant.4312323 http://pending.schema.org/fundedItem sg:pub.10.1038/s41566-019-0349-y
105 rdf:type schema:MonetaryGrant
106 sg:grant.4320162 http://pending.schema.org/fundedItem sg:pub.10.1038/s41566-019-0349-y
107 rdf:type schema:MonetaryGrant
108 sg:grant.5497543 http://pending.schema.org/fundedItem sg:pub.10.1038/s41566-019-0349-y
109 rdf:type schema:MonetaryGrant
110 sg:grant.6542942 http://pending.schema.org/fundedItem sg:pub.10.1038/s41566-019-0349-y
111 rdf:type schema:MonetaryGrant
112 sg:journal.1037430 schema:issn 1749-4885
113 1749-4893
114 schema:name Nature Photonics
115 rdf:type schema:Periodical
116 sg:pub.10.1038/nature01676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043030934
117 https://doi.org/10.1038/nature01676
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/nature12994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015222299
120 https://doi.org/10.1038/nature12994
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/ncomms12174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013982235
123 https://doi.org/10.1038/ncomms12174
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/ncomms9831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026763480
126 https://doi.org/10.1038/ncomms9831
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nmat1710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047021007
129 https://doi.org/10.1038/nmat1710
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nmat3505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009145791
132 https://doi.org/10.1038/nmat3505
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/nmat4061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051148621
135 https://doi.org/10.1038/nmat4061
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nnano.2015.227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051070900
138 https://doi.org/10.1038/nnano.2015.227
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nphoton.2015.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041485051
141 https://doi.org/10.1038/nphoton.2015.104
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nphys3620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031778253
144 https://doi.org/10.1038/nphys3620
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/adom.201600290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004165465
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1021/acs.nanolett.6b00748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041884048
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/acs.nanolett.7b04377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099641400
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1021/acsami.6b14483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079398361
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1021/nl5021975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220908
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1021/nl502557g schema:sameAs https://app.dimensions.ai/details/publication/pub.1039223016
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1021/nl5045007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221145
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1039/b703983m schema:sameAs https://app.dimensions.ai/details/publication/pub.1053287600
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1063/1.4941996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037106749
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1063/1.4967232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007468072
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1063/1.4977953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084151107
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1080/00107518608211022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044376239
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1088/0022-3727/2/6/310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041755889
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1088/1464-4258/5/1/201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059139872
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1088/2053-1583/1/1/011002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010336747
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevb.94.085429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060651883
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevlett.1.450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060752337
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevlett.108.087404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014927927
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevlett.113.076802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041070857
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevlett.71.1752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060807547
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1126/science.189.4207.955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062511979
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1364/cleo_qels.2016.ftu4l.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098998405
189 rdf:type schema:CreativeWork
190 https://www.grid.ac/institutes/grid.266097.c schema:alternateName University of California, Riverside
191 schema:name Department of Materials Science and Engineering, University of California, Riverside, Riverside, CA, USA
192 Department of Physics and Astronomy, University of California, Riverside, Riverside, CA, USA
193 Laboratory of Quantum Materials Optoelectronics, University of California, Riverside, Riverside, CA, USA
194 rdf:type schema:Organization
195 https://www.grid.ac/institutes/grid.440050.5 schema:alternateName Canadian Institute for Advanced Research
196 schema:name Canadian Institute for Advanced Research, Toronto, Ontario, Canada
197 Department of Materials Science and Engineering, University of California, Riverside, Riverside, CA, USA
198 Department of Physics and Astronomy, University of California, Riverside, Riverside, CA, USA
199 Laboratory of Quantum Materials Optoelectronics, University of California, Riverside, Riverside, CA, USA
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...