Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02

AUTHORS

Alberto Ciarrocchi, Dmitrii Unuchek, Ahmet Avsar, Kenji Watanabe, Takashi Taniguchi, Andras Kis

ABSTRACT

Long-lived interlayer excitons in van der Waals heterostructures based on transition metal dichalcogenides, together with unique spin-valley physics, make them promising for next-generation photonic and valleytronic devices. While the emission characteristics of interlayer excitons have been studied, efficient manipulation of their valley-state, a necessary requirement for information encoding, is still lacking. Here, we demonstrate comprehensive electrical control of interlayer excitons in a MoSe2/WSe2 heterostructure. Encapsulation of our well-aligned stack with hexagonal boron nitride (h-BN) allows us to resolve two separate narrow interlayer transitions with opposite helicities under circularly polarized excitation, either preserving or reversing the polarization of incoming light. By electrically controlling their relative intensities, we realize a polarization switch with tuneable emission intensity and wavelength. Finally, we demonstrate large Zeeman shifts of these two transitions upon application of an external magnetic field. These results are interpreted within the picture of moiré-induced brightening of forbidden optical transitions. The ability to control the polarization of interlayer excitons is a step forward towards the manipulation of the valley degree-of-freedom in realistic device applications. More... »

PAGES

131-136

References to SciGraph publications

  • 2013-09. Optical generation of excitonic valley coherence in monolayer WSe2 in NATURE NANOTECHNOLOGY
  • 2016-11. Valleytronics in 2D materials in NATURE REVIEWS MATERIALS
  • 2010-10. Boron nitride substrates for high-quality graphene electronics in NATURE NANOTECHNOLOGY
  • 2015-12. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures in NATURE COMMUNICATIONS
  • 2017-12. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures in NATURE COMMUNICATIONS
  • 2018-12. Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers in NATURE COMMUNICATIONS
  • 2015-02. Magnetic control of valley pseudospin in monolayer WSe2 in NATURE PHYSICS
  • 2012-01. Valley-selective circular dichroism of monolayer molybdenum disulphide in NATURE COMMUNICATIONS
  • 2011-03. Single-layer MoS2 transistors in NATURE NANOTECHNOLOGY
  • 2014-05. Spin and pseudospins in layered transition metal dichalcogenides in NATURE PHYSICS
  • 2017-06-13. 2D transition metal dichalcogenides in NATURE REVIEWS MATERIALS
  • 2007-03. Valley filter and valley valve in graphene in NATURE PHYSICS
  • 2018-08. Room-temperature electrical control of exciton flux in a van der Waals heterostructure in NATURE
  • 2015-02. Valley Zeeman effect in elementary optical excitations of monolayer WSe2 in NATURE PHYSICS
  • 2012-11. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides in NATURE NANOTECHNOLOGY
  • 2012-08. Control of valley polarization in monolayer MoS2 by optical helicity in NATURE NANOTECHNOLOGY
  • 2012-08. Valley polarization in MoS2 monolayers by optical pumping in NATURE NANOTECHNOLOGY
  • 2018-04. Unconventional superconductivity in magic-angle graphene superlattices in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41566-018-0325-y

    DOI

    http://dx.doi.org/10.1038/s41566-018-0325-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110584098

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30886643


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
              "id": "https://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Electrical Engineering Institute, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), Lausanne, Switzerland", 
                "Institute of Materials Science and Engineering, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ciarrocchi", 
            "givenName": "Alberto", 
            "id": "sg:person.015607734444.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015607734444.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
              "id": "https://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Electrical Engineering Institute, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), Lausanne, Switzerland", 
                "Institute of Materials Science and Engineering, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Unuchek", 
            "givenName": "Dmitrii", 
            "id": "sg:person.016263711713.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016263711713.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
              "id": "https://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Electrical Engineering Institute, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), Lausanne, Switzerland", 
                "Institute of Materials Science and Engineering, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Avsar", 
            "givenName": "Ahmet", 
            "id": "sg:person.01025014170.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025014170.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute for Materials Science", 
              "id": "https://www.grid.ac/institutes/grid.21941.3f", 
              "name": [
                "National Institute for Materials Science, 1\u20131 Namiki, Tsukuba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Watanabe", 
            "givenName": "Kenji", 
            "id": "sg:person.010026307551.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026307551.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute for Materials Science", 
              "id": "https://www.grid.ac/institutes/grid.21941.3f", 
              "name": [
                "National Institute for Materials Science, 1\u20131 Namiki, Tsukuba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Taniguchi", 
            "givenName": "Takashi", 
            "id": "sg:person.0765715521.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
              "id": "https://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Electrical Engineering Institute, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), Lausanne, Switzerland", 
                "Institute of Materials Science and Engineering, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kis", 
            "givenName": "Andras", 
            "id": "sg:person.0731604571.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731604571.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nnano.2013.151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003857275", 
              "https://doi.org/10.1038/nnano.2013.151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004672159", 
              "https://doi.org/10.1038/nphys3201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.76.323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007326605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.76.323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007326605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aac7820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008311347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-0248(98)01329-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010684546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1237240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011524156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/natrevmats.2016.55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014246143", 
              "https://doi.org/10.1038/natrevmats.2016.55"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms7242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014292490", 
              "https://doi.org/10.1038/ncomms7242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4774090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018075120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2010.172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018587379", 
              "https://doi.org/10.1038/nnano.2010.172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2010.172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018587379", 
              "https://doi.org/10.1038/nnano.2010.172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2942", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018699053", 
              "https://doi.org/10.1038/nphys2942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023716123", 
              "https://doi.org/10.1038/nphys3203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4916089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025863768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys547", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027885336", 
              "https://doi.org/10.1038/nphys547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2012.95", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027952436", 
              "https://doi.org/10.1038/nnano.2012.95"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2012.193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028219354", 
              "https://doi.org/10.1038/nnano.2012.193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1405435111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029257262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl903868w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031417418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl903868w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031417418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2012.96", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038550073", 
              "https://doi.org/10.1038/nnano.2012.96"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.186404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041475277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.186404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041475277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl200758b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047611399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl200758b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047611399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2010.279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047704758", 
              "https://doi.org/10.1038/nnano.2010.279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049548334", 
              "https://doi.org/10.1038/ncomms1882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.4.011034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050896610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.4.011034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050896610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.196802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053264408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.196802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053264408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.075409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060642895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.075409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060642895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/natrevmats.2017.33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085993311", 
              "https://doi.org/10.1038/natrevmats.2017.33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.7b01304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090901166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/sciadv.1701696", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092634621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-01748-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092638690", 
              "https://doi.org/10.1038/s41467-017-01748-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.97.035306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100580212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.97.035306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100580212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature26160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101336540", 
              "https://doi.org/10.1038/nature26160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature26160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101336540", 
              "https://doi.org/10.1038/nature26160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-03869-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103204886", 
              "https://doi.org/10.1038/s41467-018-03869-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/2053-1583/aac065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103695850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsnano.8b01369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103789154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0357-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105810949", 
              "https://doi.org/10.1038/s41586-018-0357-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "Long-lived interlayer excitons in van der Waals heterostructures based on transition metal dichalcogenides, together with unique spin-valley physics, make them promising for next-generation photonic and valleytronic devices. While the emission characteristics of interlayer excitons have been studied, efficient manipulation of their valley-state, a necessary requirement for information encoding, is still lacking. Here, we demonstrate comprehensive electrical control of interlayer excitons in a MoSe2/WSe2 heterostructure. Encapsulation of our well-aligned stack with hexagonal boron nitride (h-BN) allows us to resolve two separate narrow interlayer transitions with opposite helicities under circularly polarized excitation, either preserving or reversing the polarization of incoming light. By electrically controlling their relative intensities, we realize a polarization switch with tuneable emission intensity and wavelength. Finally, we demonstrate large Zeeman shifts of these two transitions upon application of an external magnetic field. These results are interpreted within the picture of moir\u00e9-induced brightening of forbidden optical transitions. The ability to control the polarization of interlayer excitons is a step forward towards the manipulation of the valley degree-of-freedom in realistic device applications.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41566-018-0325-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7613061", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4057133", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5233084", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5495363", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5495369", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5885411", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1037430", 
            "issn": [
              "1749-4885", 
              "1749-4893"
            ], 
            "name": "Nature Photonics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "name": "Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures", 
        "pagination": "131-136", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "761afce3678d69a86610d2c54c427d07c55ccf369a396fc6b1387809f3bc9686"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30886643"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101283276"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41566-018-0325-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110584098"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41566-018-0325-y", 
          "https://app.dimensions.ai/details/publication/pub.1110584098"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78974_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41566-018-0325-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41566-018-0325-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41566-018-0325-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41566-018-0325-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41566-018-0325-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    246 TRIPLES      21 PREDICATES      65 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41566-018-0325-y schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author N00f032d31b5146f3ab775a7a8766f8cc
    4 schema:citation sg:pub.10.1038/natrevmats.2016.55
    5 sg:pub.10.1038/natrevmats.2017.33
    6 sg:pub.10.1038/nature26160
    7 sg:pub.10.1038/ncomms1882
    8 sg:pub.10.1038/ncomms7242
    9 sg:pub.10.1038/nnano.2010.172
    10 sg:pub.10.1038/nnano.2010.279
    11 sg:pub.10.1038/nnano.2012.193
    12 sg:pub.10.1038/nnano.2012.95
    13 sg:pub.10.1038/nnano.2012.96
    14 sg:pub.10.1038/nnano.2013.151
    15 sg:pub.10.1038/nphys2942
    16 sg:pub.10.1038/nphys3201
    17 sg:pub.10.1038/nphys3203
    18 sg:pub.10.1038/nphys547
    19 sg:pub.10.1038/s41467-017-01748-1
    20 sg:pub.10.1038/s41467-018-03869-7
    21 sg:pub.10.1038/s41586-018-0357-y
    22 https://doi.org/10.1016/s0022-0248(98)01329-3
    23 https://doi.org/10.1021/acs.nanolett.7b01304
    24 https://doi.org/10.1021/acsnano.8b01369
    25 https://doi.org/10.1021/nl200758b
    26 https://doi.org/10.1021/nl903868w
    27 https://doi.org/10.1063/1.4774090
    28 https://doi.org/10.1063/1.4916089
    29 https://doi.org/10.1073/pnas.1405435111
    30 https://doi.org/10.1088/2053-1583/aac065
    31 https://doi.org/10.1103/physrevb.89.075409
    32 https://doi.org/10.1103/physrevb.97.035306
    33 https://doi.org/10.1103/physrevlett.108.196802
    34 https://doi.org/10.1103/physrevlett.97.186404
    35 https://doi.org/10.1103/physrevx.4.011034
    36 https://doi.org/10.1103/revmodphys.76.323
    37 https://doi.org/10.1126/sciadv.1701696
    38 https://doi.org/10.1126/science.1237240
    39 https://doi.org/10.1126/science.aac7820
    40 schema:datePublished 2019-02
    41 schema:datePublishedReg 2019-02-01
    42 schema:description Long-lived interlayer excitons in van der Waals heterostructures based on transition metal dichalcogenides, together with unique spin-valley physics, make them promising for next-generation photonic and valleytronic devices. While the emission characteristics of interlayer excitons have been studied, efficient manipulation of their valley-state, a necessary requirement for information encoding, is still lacking. Here, we demonstrate comprehensive electrical control of interlayer excitons in a MoSe<sub>2</sub>/WSe<sub>2</sub> heterostructure. Encapsulation of our well-aligned stack with hexagonal boron nitride (h-BN) allows us to resolve two separate narrow interlayer transitions with opposite helicities under circularly polarized excitation, either preserving or reversing the polarization of incoming light. By electrically controlling their relative intensities, we realize a polarization switch with tuneable emission intensity and wavelength. Finally, we demonstrate large Zeeman shifts of these two transitions upon application of an external magnetic field. These results are interpreted within the picture of moiré-induced brightening of forbidden optical transitions. The ability to control the polarization of interlayer excitons is a step forward towards the manipulation of the valley degree-of-freedom in realistic device applications.
    43 schema:genre research_article
    44 schema:inLanguage en
    45 schema:isAccessibleForFree true
    46 schema:isPartOf N6a44a11a8c9844f19da943ac214724d8
    47 Na3f85fa24d434310a8507315e7ce6514
    48 sg:journal.1037430
    49 schema:name Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures
    50 schema:pagination 131-136
    51 schema:productId N14830403083a449cb241149da765e6e2
    52 N4d33bf94c283403cb438640716202eba
    53 N4f84a374643b4172a025ebb53657410b
    54 N988f5456292148a692f076fe2c6022ca
    55 Nd433966ad0f44ee9a3f2ba8443d5d9a3
    56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110584098
    57 https://doi.org/10.1038/s41566-018-0325-y
    58 schema:sdDatePublished 2019-04-11T13:21
    59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    60 schema:sdPublisher N8b3440186d1a436db86fe1de38370856
    61 schema:url https://www.nature.com/articles/s41566-018-0325-y
    62 sgo:license sg:explorer/license/
    63 sgo:sdDataset articles
    64 rdf:type schema:ScholarlyArticle
    65 N00f032d31b5146f3ab775a7a8766f8cc rdf:first sg:person.015607734444.26
    66 rdf:rest Nf149a96ba62d4c8a94e159858a41c7bf
    67 N14830403083a449cb241149da765e6e2 schema:name nlm_unique_id
    68 schema:value 101283276
    69 rdf:type schema:PropertyValue
    70 N19e61055f8754084bc0a77bb489d7c04 rdf:first sg:person.01025014170.28
    71 rdf:rest Ncde24f2f250442b3823485d386f2ddf0
    72 N4d33bf94c283403cb438640716202eba schema:name readcube_id
    73 schema:value 761afce3678d69a86610d2c54c427d07c55ccf369a396fc6b1387809f3bc9686
    74 rdf:type schema:PropertyValue
    75 N4f84a374643b4172a025ebb53657410b schema:name dimensions_id
    76 schema:value pub.1110584098
    77 rdf:type schema:PropertyValue
    78 N6a44a11a8c9844f19da943ac214724d8 schema:volumeNumber 13
    79 rdf:type schema:PublicationVolume
    80 N6e71ea2a3f494b4189e981cdb6d756f6 rdf:first sg:person.0765715521.02
    81 rdf:rest Nf88f15e68e7d439ab02c264dee6b0327
    82 N8b3440186d1a436db86fe1de38370856 schema:name Springer Nature - SN SciGraph project
    83 rdf:type schema:Organization
    84 N988f5456292148a692f076fe2c6022ca schema:name doi
    85 schema:value 10.1038/s41566-018-0325-y
    86 rdf:type schema:PropertyValue
    87 Na3f85fa24d434310a8507315e7ce6514 schema:issueNumber 2
    88 rdf:type schema:PublicationIssue
    89 Ncde24f2f250442b3823485d386f2ddf0 rdf:first sg:person.010026307551.76
    90 rdf:rest N6e71ea2a3f494b4189e981cdb6d756f6
    91 Nd433966ad0f44ee9a3f2ba8443d5d9a3 schema:name pubmed_id
    92 schema:value 30886643
    93 rdf:type schema:PropertyValue
    94 Nf149a96ba62d4c8a94e159858a41c7bf rdf:first sg:person.016263711713.51
    95 rdf:rest N19e61055f8754084bc0a77bb489d7c04
    96 Nf88f15e68e7d439ab02c264dee6b0327 rdf:first sg:person.0731604571.13
    97 rdf:rest rdf:nil
    98 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Physical Sciences
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    103 rdf:type schema:DefinedTerm
    104 sg:grant.4057133 http://pending.schema.org/fundedItem sg:pub.10.1038/s41566-018-0325-y
    105 rdf:type schema:MonetaryGrant
    106 sg:grant.5233084 http://pending.schema.org/fundedItem sg:pub.10.1038/s41566-018-0325-y
    107 rdf:type schema:MonetaryGrant
    108 sg:grant.5495363 http://pending.schema.org/fundedItem sg:pub.10.1038/s41566-018-0325-y
    109 rdf:type schema:MonetaryGrant
    110 sg:grant.5495369 http://pending.schema.org/fundedItem sg:pub.10.1038/s41566-018-0325-y
    111 rdf:type schema:MonetaryGrant
    112 sg:grant.5885411 http://pending.schema.org/fundedItem sg:pub.10.1038/s41566-018-0325-y
    113 rdf:type schema:MonetaryGrant
    114 sg:grant.7613061 http://pending.schema.org/fundedItem sg:pub.10.1038/s41566-018-0325-y
    115 rdf:type schema:MonetaryGrant
    116 sg:journal.1037430 schema:issn 1749-4885
    117 1749-4893
    118 schema:name Nature Photonics
    119 rdf:type schema:Periodical
    120 sg:person.010026307551.76 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
    121 schema:familyName Watanabe
    122 schema:givenName Kenji
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026307551.76
    124 rdf:type schema:Person
    125 sg:person.01025014170.28 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
    126 schema:familyName Avsar
    127 schema:givenName Ahmet
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025014170.28
    129 rdf:type schema:Person
    130 sg:person.015607734444.26 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
    131 schema:familyName Ciarrocchi
    132 schema:givenName Alberto
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015607734444.26
    134 rdf:type schema:Person
    135 sg:person.016263711713.51 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
    136 schema:familyName Unuchek
    137 schema:givenName Dmitrii
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016263711713.51
    139 rdf:type schema:Person
    140 sg:person.0731604571.13 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
    141 schema:familyName Kis
    142 schema:givenName Andras
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731604571.13
    144 rdf:type schema:Person
    145 sg:person.0765715521.02 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
    146 schema:familyName Taniguchi
    147 schema:givenName Takashi
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02
    149 rdf:type schema:Person
    150 sg:pub.10.1038/natrevmats.2016.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014246143
    151 https://doi.org/10.1038/natrevmats.2016.55
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1038/natrevmats.2017.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085993311
    154 https://doi.org/10.1038/natrevmats.2017.33
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1038/nature26160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101336540
    157 https://doi.org/10.1038/nature26160
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1038/ncomms1882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049548334
    160 https://doi.org/10.1038/ncomms1882
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1038/ncomms7242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014292490
    163 https://doi.org/10.1038/ncomms7242
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1038/nnano.2010.172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018587379
    166 https://doi.org/10.1038/nnano.2010.172
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/nnano.2010.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047704758
    169 https://doi.org/10.1038/nnano.2010.279
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/nnano.2012.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028219354
    172 https://doi.org/10.1038/nnano.2012.193
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/nnano.2012.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027952436
    175 https://doi.org/10.1038/nnano.2012.95
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/nnano.2012.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038550073
    178 https://doi.org/10.1038/nnano.2012.96
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/nnano.2013.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003857275
    181 https://doi.org/10.1038/nnano.2013.151
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/nphys2942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018699053
    184 https://doi.org/10.1038/nphys2942
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/nphys3201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004672159
    187 https://doi.org/10.1038/nphys3201
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/nphys3203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023716123
    190 https://doi.org/10.1038/nphys3203
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/nphys547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027885336
    193 https://doi.org/10.1038/nphys547
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/s41467-017-01748-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092638690
    196 https://doi.org/10.1038/s41467-017-01748-1
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/s41467-018-03869-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103204886
    199 https://doi.org/10.1038/s41467-018-03869-7
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/s41586-018-0357-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1105810949
    202 https://doi.org/10.1038/s41586-018-0357-y
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/s0022-0248(98)01329-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010684546
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1021/acs.nanolett.7b01304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090901166
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1021/acsnano.8b01369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103789154
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1021/nl200758b schema:sameAs https://app.dimensions.ai/details/publication/pub.1047611399
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1021/nl903868w schema:sameAs https://app.dimensions.ai/details/publication/pub.1031417418
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1063/1.4774090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018075120
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1063/1.4916089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025863768
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1073/pnas.1405435111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029257262
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1088/2053-1583/aac065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103695850
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1103/physrevb.89.075409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060642895
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1103/physrevb.97.035306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100580212
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1103/physrevlett.108.196802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053264408
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1103/physrevlett.97.186404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041475277
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1103/physrevx.4.011034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050896610
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1103/revmodphys.76.323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007326605
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1126/sciadv.1701696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092634621
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1126/science.1237240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011524156
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1126/science.aac7820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008311347
    239 rdf:type schema:CreativeWork
    240 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
    241 schema:name National Institute for Materials Science, 1–1 Namiki, Tsukuba, Japan
    242 rdf:type schema:Organization
    243 https://www.grid.ac/institutes/grid.5333.6 schema:alternateName École Polytechnique Fédérale de Lausanne
    244 schema:name Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    245 Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    246 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...