Ionic Coulomb blockade as a fractional Wien effect. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-08

AUTHORS

Nikita Kavokine, Sophie Marbach, Alessandro Siria, Lydéric Bocquet

ABSTRACT

Recent advances in nanofluidics have allowed the exploration of ion transport down to molecular-scale confinement, yet artificial porins are still far from reaching the advanced functionalities of biological ion machinery. Achieving single ion transport that is tunable by an external gate-the ionic analogue of electronic Coulomb blockade-would open new avenues in this quest. However, an understanding of ionic Coulomb blockade beyond the electronic analogy is still lacking. Here, we show that the many-body dynamics of ions in a charged nanochannel result in quantized and strongly nonlinear ionic transport, in full agreement with molecular simulations. We find that ionic Coulomb blockade occurs when, upon sufficient confinement, oppositely charged ions form 'Bjerrum pairs', and the conduction proceeds through a mechanism reminiscent of Onsager's Wien effect. Our findings open the way to novel nanofluidic functionalities, such as an ion pump based on ionic Coulomb blockade, inspired by its electronic counterpart. More... »

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41565-019-0425-y

DOI

http://dx.doi.org/10.1038/s41565-019-0425-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113300769

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30962547


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Laboratoire de Physique de l'\u00c9cole Normale Sup\u00e9rieure, ENS, Universit\u00e9 PSL, CNRS, Sorbonne Universit\u00e9, Universit\u00e9 Paris-Diderot, Sorbonne Paris Cit\u00e9, Paris, France."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kavokine", 
        "givenName": "Nikita", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratoire de Physique de l'\u00c9cole Normale Sup\u00e9rieure, ENS, Universit\u00e9 PSL, CNRS, Sorbonne Universit\u00e9, Universit\u00e9 Paris-Diderot, Sorbonne Paris Cit\u00e9, Paris, France."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marbach", 
        "givenName": "Sophie", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratoire de Physique de l'\u00c9cole Normale Sup\u00e9rieure, ENS, Universit\u00e9 PSL, CNRS, Sorbonne Universit\u00e9, Universit\u00e9 Paris-Diderot, Sorbonne Paris Cit\u00e9, Paris, France."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siria", 
        "givenName": "Alessandro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratoire de Physique de l'\u00c9cole Normale Sup\u00e9rieure, ENS, Universit\u00e9 PSL, CNRS, Sorbonne Universit\u00e9, Universit\u00e9 Paris-Diderot, Sorbonne Paris Cit\u00e9, Paris, France. lyderic.bocquet@ens.fr."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bocquet", 
        "givenName": "Lyd\u00e9ric", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat3729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001791453", 
          "https://doi.org/10.1038/nmat3729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1200488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007943394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012913870", 
          "https://doi.org/10.1038/nature11876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.148101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018415918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.148101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018415918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.051205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019817571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.051205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019817571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0079-6107(85)90012-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025572235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1478-3975/10/2/026007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025975213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1085/jgp.111.6.741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027855864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2005.05.097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030137436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4740233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031846468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002320010053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035002466", 
          "https://doi.org/10.1007/s002320010053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature18593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035448776", 
          "https://doi.org/10.1038/nature18593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/25/6/065101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043748982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature19363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043868719", 
          "https://doi.org/10.1038/nature19363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049452592", 
          "https://doi.org/10.1038/nmat4607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.198509051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049666114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b909366b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050333055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1724281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057791155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1749541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057811536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/17/8/083021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059136955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.1646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060559059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.1646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060559059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.048001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.048001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.146802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.146802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.80.839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.80.839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/17/3/011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064228709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpcc.7b05374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090836152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aan2438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091343514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/epjnbp/2017003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091551112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6528/aa9a14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092657914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511626906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098665862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511606014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098706575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aat4191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105040566"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-08", 
    "datePublishedReg": "2019-04-08", 
    "description": "Recent advances in nanofluidics have allowed the exploration of ion transport down to molecular-scale confinement, yet artificial porins are still far from reaching the advanced functionalities of biological ion machinery. Achieving single ion transport that is tunable by an external gate-the ionic analogue of electronic Coulomb blockade-would open new avenues in this quest. However, an understanding of ionic Coulomb blockade beyond the electronic analogy is still lacking. Here, we show that the many-body dynamics of ions in a charged nanochannel result in quantized and strongly nonlinear ionic transport, in full agreement with molecular simulations. We find that ionic Coulomb blockade occurs when, upon sufficient confinement, oppositely charged ions form 'Bjerrum pairs', and the conduction proceeds through a mechanism reminiscent of Onsager's Wien effect. Our findings open the way to novel nanofluidic functionalities, such as an ion pump based on ionic Coulomb blockade, inspired by its electronic counterpart.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41565-019-0425-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "type": "Periodical"
      }
    ], 
    "name": "Ionic Coulomb blockade as a fractional Wien effect.", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41565-019-0425-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113300769"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101283273"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30962547"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41565-019-0425-y", 
      "https://app.dimensions.ai/details/publication/pub.1113300769"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119720_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/s41565-019-0425-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41565-019-0425-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41565-019-0425-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41565-019-0425-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41565-019-0425-y'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      20 PREDICATES      56 URIs      16 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41565-019-0425-y schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nb056ff612eff45a288a529af0bccbcf3
4 schema:citation sg:pub.10.1007/s002320010053
5 sg:pub.10.1038/nature11876
6 sg:pub.10.1038/nature18593
7 sg:pub.10.1038/nature19363
8 sg:pub.10.1038/nmat3729
9 sg:pub.10.1038/nmat4607
10 https://doi.org/10.1002/anie.198509051
11 https://doi.org/10.1016/0079-6107(85)90012-4
12 https://doi.org/10.1016/j.physa.2005.05.097
13 https://doi.org/10.1017/cbo9780511606014
14 https://doi.org/10.1017/cbo9780511626906
15 https://doi.org/10.1021/acs.jpcc.7b05374
16 https://doi.org/10.1039/b909366b
17 https://doi.org/10.1051/epjnbp/2017003
18 https://doi.org/10.1063/1.1724281
19 https://doi.org/10.1063/1.1749541
20 https://doi.org/10.1063/1.4740233
21 https://doi.org/10.1085/jgp.111.6.741
22 https://doi.org/10.1088/0953-8984/25/6/065101
23 https://doi.org/10.1088/1361-6528/aa9a14
24 https://doi.org/10.1088/1367-2630/17/8/083021
25 https://doi.org/10.1088/1478-3975/10/2/026007
26 https://doi.org/10.1103/physrevb.44.1646
27 https://doi.org/10.1103/physreve.73.051205
28 https://doi.org/10.1103/physrevlett.117.048001
29 https://doi.org/10.1103/physrevlett.88.146802
30 https://doi.org/10.1103/physrevlett.95.148101
31 https://doi.org/10.1103/revmodphys.80.839
32 https://doi.org/10.1126/science.1200488
33 https://doi.org/10.1126/science.aan2438
34 https://doi.org/10.1126/science.aat4191
35 https://doi.org/10.1209/0295-5075/17/3/011
36 schema:datePublished 2019-04-08
37 schema:datePublishedReg 2019-04-08
38 schema:description Recent advances in nanofluidics have allowed the exploration of ion transport down to molecular-scale confinement, yet artificial porins are still far from reaching the advanced functionalities of biological ion machinery. Achieving single ion transport that is tunable by an external gate-the ionic analogue of electronic Coulomb blockade-would open new avenues in this quest. However, an understanding of ionic Coulomb blockade beyond the electronic analogy is still lacking. Here, we show that the many-body dynamics of ions in a charged nanochannel result in quantized and strongly nonlinear ionic transport, in full agreement with molecular simulations. We find that ionic Coulomb blockade occurs when, upon sufficient confinement, oppositely charged ions form 'Bjerrum pairs', and the conduction proceeds through a mechanism reminiscent of Onsager's Wien effect. Our findings open the way to novel nanofluidic functionalities, such as an ion pump based on ionic Coulomb blockade, inspired by its electronic counterpart.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf sg:journal.1037429
43 schema:name Ionic Coulomb blockade as a fractional Wien effect.
44 schema:productId N2b0a3566e4da4c30a1167ac823b0eae5
45 N5a1b3cbe89554dc8bb692ead5da946fd
46 Nd5b7c46e48cf481192b1cd843ae22d30
47 Nf5ea51fe1b18427387564aa81d29d19d
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113300769
49 https://doi.org/10.1038/s41565-019-0425-y
50 schema:sdDatePublished 2019-04-15T08:49
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N70d76e1aee2e4d08986adad2915d7aa3
53 schema:url http://www.nature.com/articles/s41565-019-0425-y
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N2b0a3566e4da4c30a1167ac823b0eae5 schema:name dimensions_id
58 schema:value pub.1113300769
59 rdf:type schema:PropertyValue
60 N2ba836d1279f49d8bc7557b12772dd70 schema:affiliation Nc2635631439543278c0326f770a2daae
61 schema:familyName Siria
62 schema:givenName Alessandro
63 rdf:type schema:Person
64 N4fc3832d0d60490fb61cc7050a782d6f schema:affiliation Ne75473a303b94e12a036d87496af0b8e
65 schema:familyName Marbach
66 schema:givenName Sophie
67 rdf:type schema:Person
68 N507c6e3098654bcb907ff7382fb1c6de schema:affiliation N6d94439f9e5446cb9844c2d4c097e3ab
69 schema:familyName Bocquet
70 schema:givenName Lydéric
71 rdf:type schema:Person
72 N5a1b3cbe89554dc8bb692ead5da946fd schema:name pubmed_id
73 schema:value 30962547
74 rdf:type schema:PropertyValue
75 N60b8b84cdff54e9bb2edcbe72f69cc24 rdf:first N2ba836d1279f49d8bc7557b12772dd70
76 rdf:rest N9308596cc71943579dd7f479ced9cc06
77 N6d94439f9e5446cb9844c2d4c097e3ab schema:name Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France. lyderic.bocquet@ens.fr.
78 rdf:type schema:Organization
79 N70d76e1aee2e4d08986adad2915d7aa3 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N9308596cc71943579dd7f479ced9cc06 rdf:first N507c6e3098654bcb907ff7382fb1c6de
82 rdf:rest rdf:nil
83 Na720ad937b3542a3bc97eb172a435f7b schema:affiliation Nb2c624359966445284c68fc3d8aa7cc4
84 schema:familyName Kavokine
85 schema:givenName Nikita
86 rdf:type schema:Person
87 Nb056ff612eff45a288a529af0bccbcf3 rdf:first Na720ad937b3542a3bc97eb172a435f7b
88 rdf:rest Nce363d12910640c0af4a2d3ad5d83440
89 Nb2c624359966445284c68fc3d8aa7cc4 schema:name Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.
90 rdf:type schema:Organization
91 Nc2635631439543278c0326f770a2daae schema:name Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.
92 rdf:type schema:Organization
93 Nce363d12910640c0af4a2d3ad5d83440 rdf:first N4fc3832d0d60490fb61cc7050a782d6f
94 rdf:rest N60b8b84cdff54e9bb2edcbe72f69cc24
95 Nd5b7c46e48cf481192b1cd843ae22d30 schema:name nlm_unique_id
96 schema:value 101283273
97 rdf:type schema:PropertyValue
98 Ne75473a303b94e12a036d87496af0b8e schema:name Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.
99 rdf:type schema:Organization
100 Nf5ea51fe1b18427387564aa81d29d19d schema:name doi
101 schema:value 10.1038/s41565-019-0425-y
102 rdf:type schema:PropertyValue
103 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
104 schema:name Chemical Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
107 schema:name Physical Chemistry (incl. Structural)
108 rdf:type schema:DefinedTerm
109 sg:journal.1037429 schema:issn 1748-3387
110 1748-3395
111 schema:name Nature Nanotechnology
112 rdf:type schema:Periodical
113 sg:pub.10.1007/s002320010053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035002466
114 https://doi.org/10.1007/s002320010053
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/nature11876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012913870
117 https://doi.org/10.1038/nature11876
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/nature18593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035448776
120 https://doi.org/10.1038/nature18593
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/nature19363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043868719
123 https://doi.org/10.1038/nature19363
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nmat3729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001791453
126 https://doi.org/10.1038/nmat3729
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nmat4607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049452592
129 https://doi.org/10.1038/nmat4607
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/anie.198509051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049666114
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0079-6107(85)90012-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025572235
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.physa.2005.05.097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030137436
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1017/cbo9780511606014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098706575
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1017/cbo9780511626906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098665862
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1021/acs.jpcc.7b05374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090836152
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1039/b909366b schema:sameAs https://app.dimensions.ai/details/publication/pub.1050333055
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1051/epjnbp/2017003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091551112
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.1724281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057791155
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.1749541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057811536
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1063/1.4740233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031846468
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1085/jgp.111.6.741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027855864
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1088/0953-8984/25/6/065101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043748982
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1088/1361-6528/aa9a14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092657914
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1088/1367-2630/17/8/083021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059136955
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1088/1478-3975/10/2/026007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025975213
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevb.44.1646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060559059
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physreve.73.051205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019817571
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.117.048001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060765983
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.88.146802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824698
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.95.148101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018415918
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/revmodphys.80.839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839667
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1126/science.1200488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007943394
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1126/science.aan2438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091343514
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1126/science.aat4191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105040566
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1209/0295-5075/17/3/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064228709
182 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...