Ionic Coulomb blockade as a fractional Wien effect. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-08

AUTHORS

Nikita Kavokine, Sophie Marbach, Alessandro Siria, Lydéric Bocquet

ABSTRACT

Recent advances in nanofluidics have allowed the exploration of ion transport down to molecular-scale confinement, yet artificial porins are still far from reaching the advanced functionalities of biological ion machinery. Achieving single ion transport that is tunable by an external gate-the ionic analogue of electronic Coulomb blockade-would open new avenues in this quest. However, an understanding of ionic Coulomb blockade beyond the electronic analogy is still lacking. Here, we show that the many-body dynamics of ions in a charged nanochannel result in quantized and strongly nonlinear ionic transport, in full agreement with molecular simulations. We find that ionic Coulomb blockade occurs when, upon sufficient confinement, oppositely charged ions form 'Bjerrum pairs', and the conduction proceeds through a mechanism reminiscent of Onsager's Wien effect. Our findings open the way to novel nanofluidic functionalities, such as an ion pump based on ionic Coulomb blockade, inspired by its electronic counterpart. More... »

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41565-019-0425-y

DOI

http://dx.doi.org/10.1038/s41565-019-0425-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113300769

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30962547


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Laboratoire de Physique de l'\u00c9cole Normale Sup\u00e9rieure, ENS, Universit\u00e9 PSL, CNRS, Sorbonne Universit\u00e9, Universit\u00e9 Paris-Diderot, Sorbonne Paris Cit\u00e9, Paris, France."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kavokine", 
        "givenName": "Nikita", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratoire de Physique de l'\u00c9cole Normale Sup\u00e9rieure, ENS, Universit\u00e9 PSL, CNRS, Sorbonne Universit\u00e9, Universit\u00e9 Paris-Diderot, Sorbonne Paris Cit\u00e9, Paris, France."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marbach", 
        "givenName": "Sophie", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratoire de Physique de l'\u00c9cole Normale Sup\u00e9rieure, ENS, Universit\u00e9 PSL, CNRS, Sorbonne Universit\u00e9, Universit\u00e9 Paris-Diderot, Sorbonne Paris Cit\u00e9, Paris, France."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siria", 
        "givenName": "Alessandro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratoire de Physique de l'\u00c9cole Normale Sup\u00e9rieure, ENS, Universit\u00e9 PSL, CNRS, Sorbonne Universit\u00e9, Universit\u00e9 Paris-Diderot, Sorbonne Paris Cit\u00e9, Paris, France. lyderic.bocquet@ens.fr."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bocquet", 
        "givenName": "Lyd\u00e9ric", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat3729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001791453", 
          "https://doi.org/10.1038/nmat3729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1200488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007943394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012913870", 
          "https://doi.org/10.1038/nature11876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.148101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018415918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.148101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018415918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.051205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019817571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.051205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019817571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0079-6107(85)90012-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025572235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1478-3975/10/2/026007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025975213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1085/jgp.111.6.741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027855864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2005.05.097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030137436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4740233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031846468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002320010053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035002466", 
          "https://doi.org/10.1007/s002320010053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature18593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035448776", 
          "https://doi.org/10.1038/nature18593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/25/6/065101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043748982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature19363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043868719", 
          "https://doi.org/10.1038/nature19363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049452592", 
          "https://doi.org/10.1038/nmat4607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.198509051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049666114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b909366b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050333055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1724281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057791155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1749541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057811536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/17/8/083021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059136955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.1646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060559059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.1646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060559059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.048001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.048001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.146802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.146802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.80.839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.80.839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/17/3/011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064228709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpcc.7b05374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090836152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aan2438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091343514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/epjnbp/2017003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091551112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6528/aa9a14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092657914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511626906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098665862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511606014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098706575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aat4191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105040566"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-08", 
    "datePublishedReg": "2019-04-08", 
    "description": "Recent advances in nanofluidics have allowed the exploration of ion transport down to molecular-scale confinement, yet artificial porins are still far from reaching the advanced functionalities of biological ion machinery. Achieving single ion transport that is tunable by an external gate-the ionic analogue of electronic Coulomb blockade-would open new avenues in this quest. However, an understanding of ionic Coulomb blockade beyond the electronic analogy is still lacking. Here, we show that the many-body dynamics of ions in a charged nanochannel result in quantized and strongly nonlinear ionic transport, in full agreement with molecular simulations. We find that ionic Coulomb blockade occurs when, upon sufficient confinement, oppositely charged ions form 'Bjerrum pairs', and the conduction proceeds through a mechanism reminiscent of Onsager's Wien effect. Our findings open the way to novel nanofluidic functionalities, such as an ion pump based on ionic Coulomb blockade, inspired by its electronic counterpart.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41565-019-0425-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "type": "Periodical"
      }
    ], 
    "name": "Ionic Coulomb blockade as a fractional Wien effect.", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41565-019-0425-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113300769"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101283273"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30962547"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41565-019-0425-y", 
      "https://app.dimensions.ai/details/publication/pub.1113300769"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119720_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/s41565-019-0425-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41565-019-0425-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41565-019-0425-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41565-019-0425-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41565-019-0425-y'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      20 PREDICATES      56 URIs      16 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41565-019-0425-y schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N35423ecdfc6a4ae6a331aa3f8133c276
4 schema:citation sg:pub.10.1007/s002320010053
5 sg:pub.10.1038/nature11876
6 sg:pub.10.1038/nature18593
7 sg:pub.10.1038/nature19363
8 sg:pub.10.1038/nmat3729
9 sg:pub.10.1038/nmat4607
10 https://doi.org/10.1002/anie.198509051
11 https://doi.org/10.1016/0079-6107(85)90012-4
12 https://doi.org/10.1016/j.physa.2005.05.097
13 https://doi.org/10.1017/cbo9780511606014
14 https://doi.org/10.1017/cbo9780511626906
15 https://doi.org/10.1021/acs.jpcc.7b05374
16 https://doi.org/10.1039/b909366b
17 https://doi.org/10.1051/epjnbp/2017003
18 https://doi.org/10.1063/1.1724281
19 https://doi.org/10.1063/1.1749541
20 https://doi.org/10.1063/1.4740233
21 https://doi.org/10.1085/jgp.111.6.741
22 https://doi.org/10.1088/0953-8984/25/6/065101
23 https://doi.org/10.1088/1361-6528/aa9a14
24 https://doi.org/10.1088/1367-2630/17/8/083021
25 https://doi.org/10.1088/1478-3975/10/2/026007
26 https://doi.org/10.1103/physrevb.44.1646
27 https://doi.org/10.1103/physreve.73.051205
28 https://doi.org/10.1103/physrevlett.117.048001
29 https://doi.org/10.1103/physrevlett.88.146802
30 https://doi.org/10.1103/physrevlett.95.148101
31 https://doi.org/10.1103/revmodphys.80.839
32 https://doi.org/10.1126/science.1200488
33 https://doi.org/10.1126/science.aan2438
34 https://doi.org/10.1126/science.aat4191
35 https://doi.org/10.1209/0295-5075/17/3/011
36 schema:datePublished 2019-04-08
37 schema:datePublishedReg 2019-04-08
38 schema:description Recent advances in nanofluidics have allowed the exploration of ion transport down to molecular-scale confinement, yet artificial porins are still far from reaching the advanced functionalities of biological ion machinery. Achieving single ion transport that is tunable by an external gate-the ionic analogue of electronic Coulomb blockade-would open new avenues in this quest. However, an understanding of ionic Coulomb blockade beyond the electronic analogy is still lacking. Here, we show that the many-body dynamics of ions in a charged nanochannel result in quantized and strongly nonlinear ionic transport, in full agreement with molecular simulations. We find that ionic Coulomb blockade occurs when, upon sufficient confinement, oppositely charged ions form 'Bjerrum pairs', and the conduction proceeds through a mechanism reminiscent of Onsager's Wien effect. Our findings open the way to novel nanofluidic functionalities, such as an ion pump based on ionic Coulomb blockade, inspired by its electronic counterpart.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf sg:journal.1037429
43 schema:name Ionic Coulomb blockade as a fractional Wien effect.
44 schema:productId N397e939752ca417eb2c3427d44a07a54
45 N613b9098d82340bcadf68eccae9a5466
46 Na43e7afbfb114685a1122e2ea4fb00b8
47 Ne601a85ad4e84c7a990d856b9b7e0425
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113300769
49 https://doi.org/10.1038/s41565-019-0425-y
50 schema:sdDatePublished 2019-04-15T08:49
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nbc03c9ed84754a1b917782b57d24915c
53 schema:url http://www.nature.com/articles/s41565-019-0425-y
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N1540753fca1b4e3582c6f32bee4eb8fe rdf:first N3de2a5e0c28c468e93d9f3c99052f552
58 rdf:rest rdf:nil
59 N28732f8b75ef4ab7ad5927f709588abb schema:affiliation Ncd178be3cdeb400db3e9cae61c3b00da
60 schema:familyName Kavokine
61 schema:givenName Nikita
62 rdf:type schema:Person
63 N35423ecdfc6a4ae6a331aa3f8133c276 rdf:first N28732f8b75ef4ab7ad5927f709588abb
64 rdf:rest N8d9e34c3cefe4bd890839a55e32702a0
65 N397e939752ca417eb2c3427d44a07a54 schema:name nlm_unique_id
66 schema:value 101283273
67 rdf:type schema:PropertyValue
68 N3de2a5e0c28c468e93d9f3c99052f552 schema:affiliation N917109709f5948e7b0ff5f0bd25d0b1b
69 schema:familyName Bocquet
70 schema:givenName Lydéric
71 rdf:type schema:Person
72 N4c543a48087b403db8bf4bf082220f17 rdf:first Nac3f2b6b1fa94ab0812af2ca2f3c4208
73 rdf:rest N1540753fca1b4e3582c6f32bee4eb8fe
74 N4fa54ac18e274e9bbfa7eae9eeb592b7 schema:name Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.
75 rdf:type schema:Organization
76 N613b9098d82340bcadf68eccae9a5466 schema:name dimensions_id
77 schema:value pub.1113300769
78 rdf:type schema:PropertyValue
79 N71d8e28d99644dab848ae02f6dc4a7b5 schema:affiliation N4fa54ac18e274e9bbfa7eae9eeb592b7
80 schema:familyName Marbach
81 schema:givenName Sophie
82 rdf:type schema:Person
83 N8d9e34c3cefe4bd890839a55e32702a0 rdf:first N71d8e28d99644dab848ae02f6dc4a7b5
84 rdf:rest N4c543a48087b403db8bf4bf082220f17
85 N917109709f5948e7b0ff5f0bd25d0b1b schema:name Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France. lyderic.bocquet@ens.fr.
86 rdf:type schema:Organization
87 Na04b16ac566c4ba6bd8496a80e6b32b4 schema:name Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.
88 rdf:type schema:Organization
89 Na43e7afbfb114685a1122e2ea4fb00b8 schema:name doi
90 schema:value 10.1038/s41565-019-0425-y
91 rdf:type schema:PropertyValue
92 Nac3f2b6b1fa94ab0812af2ca2f3c4208 schema:affiliation Na04b16ac566c4ba6bd8496a80e6b32b4
93 schema:familyName Siria
94 schema:givenName Alessandro
95 rdf:type schema:Person
96 Nbc03c9ed84754a1b917782b57d24915c schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Ncd178be3cdeb400db3e9cae61c3b00da schema:name Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.
99 rdf:type schema:Organization
100 Ne601a85ad4e84c7a990d856b9b7e0425 schema:name pubmed_id
101 schema:value 30962547
102 rdf:type schema:PropertyValue
103 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
104 schema:name Chemical Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
107 schema:name Physical Chemistry (incl. Structural)
108 rdf:type schema:DefinedTerm
109 sg:journal.1037429 schema:issn 1748-3387
110 1748-3395
111 schema:name Nature Nanotechnology
112 rdf:type schema:Periodical
113 sg:pub.10.1007/s002320010053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035002466
114 https://doi.org/10.1007/s002320010053
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/nature11876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012913870
117 https://doi.org/10.1038/nature11876
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/nature18593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035448776
120 https://doi.org/10.1038/nature18593
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/nature19363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043868719
123 https://doi.org/10.1038/nature19363
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nmat3729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001791453
126 https://doi.org/10.1038/nmat3729
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nmat4607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049452592
129 https://doi.org/10.1038/nmat4607
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/anie.198509051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049666114
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0079-6107(85)90012-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025572235
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.physa.2005.05.097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030137436
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1017/cbo9780511606014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098706575
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1017/cbo9780511626906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098665862
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1021/acs.jpcc.7b05374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090836152
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1039/b909366b schema:sameAs https://app.dimensions.ai/details/publication/pub.1050333055
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1051/epjnbp/2017003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091551112
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.1724281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057791155
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.1749541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057811536
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1063/1.4740233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031846468
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1085/jgp.111.6.741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027855864
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1088/0953-8984/25/6/065101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043748982
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1088/1361-6528/aa9a14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092657914
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1088/1367-2630/17/8/083021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059136955
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1088/1478-3975/10/2/026007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025975213
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevb.44.1646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060559059
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physreve.73.051205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019817571
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.117.048001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060765983
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.88.146802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824698
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.95.148101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018415918
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/revmodphys.80.839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839667
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1126/science.1200488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007943394
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1126/science.aan2438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091343514
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1126/science.aat4191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105040566
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1209/0295-5075/17/3/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064228709
182 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...