Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

In-Ho Lee, Daehan Yoo, Phaedon Avouris, Tony Low, Sang-Hyun Oh

ABSTRACT

One of the fundamental hurdles in plasmonics is the trade-off between electromagnetic field confinement and the coupling efficiency with free-space light, a consequence of the large momentum mismatch between the excitation source and plasmonic modes. Acoustic plasmons in graphene, in particular, have an extreme level of field confinement, as well as an extreme momentum mismatch. Here, we show that this fundamental compromise can be overcome and demonstrate a graphene acoustic plasmon resonator with nearly perfect absorption (94%) of incident mid-infrared light. This high efficiency is achieved by utilizing a two-stage coupling scheme: free-space light coupled to conventional graphene plasmons, which then couple to ultraconfined acoustic plasmons. To realize this scheme, we transfer unpatterned large-area graphene onto template-stripped ultraflat metal ribbons. A monolithically integrated optical spacer and a reflector further boost the enhancement. We show that graphene acoustic plasmons allow ultrasensitive measurements of absorption bands and surface phonon modes in ångström-thick protein and SiO2 layers, respectively. Our acoustic plasmon resonator platform is scalable and can harness the ultimate level of light-matter interactions for potential applications including spectroscopy, sensing, metasurfaces and optoelectronics. More... »

PAGES

1-7

References to SciGraph publications

  • 2012-01. Broadband graphene terahertz modulators enabled by intraband transitions in NATURE COMMUNICATIONS
  • 2012-07. Gate-tuning of graphene plasmons revealed by infrared nano-imaging in NATURE
  • 2013-05. Damping pathways of mid-infrared plasmons in graphene nanostructures in NATURE PHOTONICS
  • 2010-07. Thermal infrared emission from biased graphene in NATURE NANOTECHNOLOGY
  • 2012-07. Optical nano-imaging of gate-tunable graphene plasmons in NATURE
  • 2016-07-27. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons in NATURE COMMUNICATIONS
  • 2013-12. Photocurrent in graphene harnessed by tunable intrinsic plasmons in NATURE COMMUNICATIONS
  • 2011-09. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets in NATURE PHOTONICS
  • 2017-06. Broadband image sensor array based on graphene–CMOS integration in NATURE PHOTONICS
  • 2016-04. Optical modulators with 2D layered materials in NATURE PHOTONICS
  • 2016-10-24. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy in NATURE NANOTECHNOLOGY
  • 2011-06-02. A graphene-based broadband optical modulator in NATURE
  • 2014-10. Photodetectors based on graphene, other two-dimensional materials and hybrid systems in NATURE NANOTECHNOLOGY
  • 2017-02. Thermoelectric detection and imaging of propagating graphene plasmons in NATURE MATERIALS
  • 2017-02. Polaritons in layered two-dimensional materials in NATURE MATERIALS
  • 2015-04. Highly confined low-loss plasmons in graphene–boron nitride heterostructures in NATURE MATERIALS
  • 2014-04. Graphene photodetectors with ultra-broadband and high responsivity at room temperature in NATURE NANOTECHNOLOGY
  • 2011-10. Graphene plasmonics for tunable terahertz metamaterials in NATURE NANOTECHNOLOGY
  • 2011-07. Broadband graphene polarizer in NATURE PHOTONICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41565-019-0363-8

    DOI

    http://dx.doi.org/10.1038/s41565-019-0363-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112058054

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30742134


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Optical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Minnesota", 
              "id": "https://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "In-Ho", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Minnesota", 
              "id": "https://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yoo", 
            "givenName": "Daehan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "IBM Research \u2013 Thomas J. Watson Research Center", 
              "id": "https://www.grid.ac/institutes/grid.481554.9", 
              "name": [
                "IBM T. J. Watson Research Center, Yorktown Heights, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Avouris", 
            "givenName": "Phaedon", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Minnesota", 
              "id": "https://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Low", 
            "givenName": "Tony", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Minnesota", 
              "id": "https://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Oh", 
            "givenName": "Sang-Hyun", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1021/nl2005737", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001585577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl2005737", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001585577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c6ra23727d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001682230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms2951", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001693824", 
              "https://doi.org/10.1038/ncomms2951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.111.247401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003084792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.111.247401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003084792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.200803616", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004976958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.200803616", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004976958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11253", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006010066", 
              "https://doi.org/10.1038/nature11253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0907459106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006068386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2011.146", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007038178", 
              "https://doi.org/10.1038/nnano.2011.146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.90.041407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007122197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.90.041407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007122197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.195408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008295076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.195408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008295076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008640603", 
              "https://doi.org/10.1038/nnano.2014.215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2013.57", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009176316", 
              "https://doi.org/10.1038/nphoton.2013.57"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.90.165409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009533070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.90.165409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009533070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.84.195446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011620871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.84.195446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011620871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013150355", 
              "https://doi.org/10.1038/nature10067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4755", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013808003", 
              "https://doi.org/10.1038/nmat4755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017144522", 
              "https://doi.org/10.1038/nnano.2014.31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2016.185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017246309", 
              "https://doi.org/10.1038/nnano.2016.185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms12334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018811675", 
              "https://doi.org/10.1038/ncomms12334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.75.205418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020457785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.75.205418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020457785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020461414", 
              "https://doi.org/10.1038/nmat4169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.80.205405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025461372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.80.205405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025461372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nn406627u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026971401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2011.177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027811755", 
              "https://doi.org/10.1038/nphoton.2011.177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2016.15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028127334", 
              "https://doi.org/10.1038/nphoton.2016.15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl201771h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030038839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl201771h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030038839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2010.90", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030344359", 
              "https://doi.org/10.1038/nnano.2010.90"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2010.90", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030344359", 
              "https://doi.org/10.1038/nnano.2010.90"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1235547", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030349025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033742220", 
              "https://doi.org/10.1038/nature11254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ssc.2011.07.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036587442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1367-2630/8/12/318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038803669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1787", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041148459", 
              "https://doi.org/10.1038/ncomms1787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4792", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042942708", 
              "https://doi.org/10.1038/nmat4792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.20.011953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043786407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1174655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046042442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1174655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046042442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nn203377t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048095000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2011.102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052113440", 
              "https://doi.org/10.1038/nphoton.2011.102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl301774e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056219469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl404824w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056220617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nn1008808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056222616"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nn403282x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056225447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.114446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057672431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3205115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057918777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1367-2630/15/6/063020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059136157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.177.1231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060440302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.177.1231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060440302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.80.245435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060631227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.80.245435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060631227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aab2051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062665788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ao.26.000744", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065101576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ao.51.006789", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065128412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.7b00359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085296956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2017.75", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085730972", 
              "https://doi.org/10.1038/nphoton.2017.75"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2017.75", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085730972", 
              "https://doi.org/10.1038/nphoton.2017.75"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aan2735", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085942191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsphotonics.7b00654", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092142045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.7b04393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100287790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.7b05295", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100992856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsphotonics.8b00062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101406960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevapplied.9.034021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101728664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevapplied.9.034021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101728664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aar8438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103524170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.8b01273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104514450"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "One of the fundamental hurdles in plasmonics is the trade-off between electromagnetic field confinement and the coupling efficiency with free-space light, a consequence of the large momentum mismatch between the excitation source and plasmonic modes. Acoustic plasmons in graphene, in particular, have an extreme level of field confinement, as well as an extreme momentum mismatch. Here, we show that this fundamental compromise can be overcome and demonstrate a graphene acoustic plasmon resonator with nearly perfect absorption (94%) of incident mid-infrared light. This high efficiency is achieved by utilizing a two-stage coupling scheme: free-space light coupled to conventional graphene plasmons, which then couple to ultraconfined acoustic plasmons. To realize this scheme, we transfer unpatterned large-area graphene onto template-stripped ultraflat metal ribbons. A monolithically integrated optical spacer and a reflector further boost the enhancement. We show that graphene acoustic plasmons allow ultrasensitive measurements of absorption bands and surface phonon modes in \u00e5ngstr\u00f6m-thick protein and SiO2 layers, respectively. Our acoustic plasmon resonator platform is scalable and can harness the ultimate level of light-matter interactions for potential applications including spectroscopy, sensing, metasurfaces and optoelectronics.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41565-019-0363-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5300880", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7568994", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1037429", 
            "issn": [
              "1748-3387", 
              "1748-3395"
            ], 
            "name": "Nature Nanotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "name": "Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy", 
        "pagination": "1-7", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "55c18e1aef49d9f8c5c701c608ae20d2e6af2d63fb4533250c68d56c9620eb13"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30742134"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101283273"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41565-019-0363-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112058054"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41565-019-0363-8", 
          "https://app.dimensions.ai/details/publication/pub.1112058054"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130797_00000006.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41565-019-0363-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41565-019-0363-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41565-019-0363-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41565-019-0363-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41565-019-0363-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    295 TRIPLES      21 PREDICATES      88 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41565-019-0363-8 schema:about anzsrc-for:02
    2 anzsrc-for:0205
    3 schema:author Nf482988533374fcf8c747ffe7be5b55e
    4 schema:citation sg:pub.10.1038/nature10067
    5 sg:pub.10.1038/nature11253
    6 sg:pub.10.1038/nature11254
    7 sg:pub.10.1038/ncomms12334
    8 sg:pub.10.1038/ncomms1787
    9 sg:pub.10.1038/ncomms2951
    10 sg:pub.10.1038/nmat4169
    11 sg:pub.10.1038/nmat4755
    12 sg:pub.10.1038/nmat4792
    13 sg:pub.10.1038/nnano.2010.90
    14 sg:pub.10.1038/nnano.2011.146
    15 sg:pub.10.1038/nnano.2014.215
    16 sg:pub.10.1038/nnano.2014.31
    17 sg:pub.10.1038/nnano.2016.185
    18 sg:pub.10.1038/nphoton.2011.102
    19 sg:pub.10.1038/nphoton.2011.177
    20 sg:pub.10.1038/nphoton.2013.57
    21 sg:pub.10.1038/nphoton.2016.15
    22 sg:pub.10.1038/nphoton.2017.75
    23 https://doi.org/10.1002/adma.200803616
    24 https://doi.org/10.1016/j.ssc.2011.07.015
    25 https://doi.org/10.1021/acs.nanolett.7b00359
    26 https://doi.org/10.1021/acs.nanolett.7b04393
    27 https://doi.org/10.1021/acs.nanolett.7b05295
    28 https://doi.org/10.1021/acs.nanolett.8b01273
    29 https://doi.org/10.1021/acsphotonics.7b00654
    30 https://doi.org/10.1021/acsphotonics.8b00062
    31 https://doi.org/10.1021/nl2005737
    32 https://doi.org/10.1021/nl201771h
    33 https://doi.org/10.1021/nl301774e
    34 https://doi.org/10.1021/nl404824w
    35 https://doi.org/10.1021/nn1008808
    36 https://doi.org/10.1021/nn203377t
    37 https://doi.org/10.1021/nn403282x
    38 https://doi.org/10.1021/nn406627u
    39 https://doi.org/10.1039/c6ra23727d
    40 https://doi.org/10.1063/1.114446
    41 https://doi.org/10.1063/1.3205115
    42 https://doi.org/10.1073/pnas.0907459106
    43 https://doi.org/10.1088/1367-2630/15/6/063020
    44 https://doi.org/10.1088/1367-2630/8/12/318
    45 https://doi.org/10.1103/physrev.177.1231
    46 https://doi.org/10.1103/physrevapplied.9.034021
    47 https://doi.org/10.1103/physrevb.75.205418
    48 https://doi.org/10.1103/physrevb.80.205405
    49 https://doi.org/10.1103/physrevb.80.245435
    50 https://doi.org/10.1103/physrevb.84.195446
    51 https://doi.org/10.1103/physrevb.86.195408
    52 https://doi.org/10.1103/physrevb.90.041407
    53 https://doi.org/10.1103/physrevb.90.165409
    54 https://doi.org/10.1103/physrevlett.111.247401
    55 https://doi.org/10.1126/science.1174655
    56 https://doi.org/10.1126/science.1235547
    57 https://doi.org/10.1126/science.aab2051
    58 https://doi.org/10.1126/science.aan2735
    59 https://doi.org/10.1126/science.aar8438
    60 https://doi.org/10.1364/ao.26.000744
    61 https://doi.org/10.1364/ao.51.006789
    62 https://doi.org/10.1364/oe.20.011953
    63 schema:datePublished 2019-04
    64 schema:datePublishedReg 2019-04-01
    65 schema:description One of the fundamental hurdles in plasmonics is the trade-off between electromagnetic field confinement and the coupling efficiency with free-space light, a consequence of the large momentum mismatch between the excitation source and plasmonic modes. Acoustic plasmons in graphene, in particular, have an extreme level of field confinement, as well as an extreme momentum mismatch. Here, we show that this fundamental compromise can be overcome and demonstrate a graphene acoustic plasmon resonator with nearly perfect absorption (94%) of incident mid-infrared light. This high efficiency is achieved by utilizing a two-stage coupling scheme: free-space light coupled to conventional graphene plasmons, which then couple to ultraconfined acoustic plasmons. To realize this scheme, we transfer unpatterned large-area graphene onto template-stripped ultraflat metal ribbons. A monolithically integrated optical spacer and a reflector further boost the enhancement. We show that graphene acoustic plasmons allow ultrasensitive measurements of absorption bands and surface phonon modes in ångström-thick protein and SiO<sub>2</sub> layers, respectively. Our acoustic plasmon resonator platform is scalable and can harness the ultimate level of light-matter interactions for potential applications including spectroscopy, sensing, metasurfaces and optoelectronics.
    66 schema:genre research_article
    67 schema:inLanguage en
    68 schema:isAccessibleForFree false
    69 schema:isPartOf N4d5fbbd504714284894208ab91711ce7
    70 Nc1c2824ef3244813b8987fef052b8f04
    71 sg:journal.1037429
    72 schema:name Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy
    73 schema:pagination 1-7
    74 schema:productId N1a85d4f899a44cfb94cef0d9720bd01d
    75 N4d033fcc61284216ada19a6fb2c4ff05
    76 N65f1d49de3684327b1b7c4d031d4df4c
    77 N9979dee326064f158d95b6cbb88186ba
    78 Nb549ac343e884b0b8c8476b19043468f
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112058054
    80 https://doi.org/10.1038/s41565-019-0363-8
    81 schema:sdDatePublished 2019-04-11T13:51
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher N9f1477203afb4028afabda5665b1952b
    84 schema:url https://www.nature.com/articles/s41565-019-0363-8
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset articles
    87 rdf:type schema:ScholarlyArticle
    88 N0293435187414b0aa5fac06f5458d0e2 rdf:first N417a34e4b10b49c8ae5d08b4e67f2a58
    89 rdf:rest N0f6b3c1368ca426ea571e43d93339247
    90 N04ad7c803d3440fc9efff1d126cb6be2 schema:affiliation https://www.grid.ac/institutes/grid.17635.36
    91 schema:familyName Yoo
    92 schema:givenName Daehan
    93 rdf:type schema:Person
    94 N0f6b3c1368ca426ea571e43d93339247 rdf:first Nc6223af3d1f9451fb662b93913ecde2e
    95 rdf:rest rdf:nil
    96 N1a85d4f899a44cfb94cef0d9720bd01d schema:name pubmed_id
    97 schema:value 30742134
    98 rdf:type schema:PropertyValue
    99 N417a34e4b10b49c8ae5d08b4e67f2a58 schema:affiliation https://www.grid.ac/institutes/grid.17635.36
    100 schema:familyName Low
    101 schema:givenName Tony
    102 rdf:type schema:Person
    103 N4d033fcc61284216ada19a6fb2c4ff05 schema:name doi
    104 schema:value 10.1038/s41565-019-0363-8
    105 rdf:type schema:PropertyValue
    106 N4d5fbbd504714284894208ab91711ce7 schema:volumeNumber 14
    107 rdf:type schema:PublicationVolume
    108 N5a4c24fd67db4709aaca306c5e297adf rdf:first Nf43e23154b8042479a9269d3d996a481
    109 rdf:rest N0293435187414b0aa5fac06f5458d0e2
    110 N65f1d49de3684327b1b7c4d031d4df4c schema:name readcube_id
    111 schema:value 55c18e1aef49d9f8c5c701c608ae20d2e6af2d63fb4533250c68d56c9620eb13
    112 rdf:type schema:PropertyValue
    113 N9979dee326064f158d95b6cbb88186ba schema:name nlm_unique_id
    114 schema:value 101283273
    115 rdf:type schema:PropertyValue
    116 N9f1477203afb4028afabda5665b1952b schema:name Springer Nature - SN SciGraph project
    117 rdf:type schema:Organization
    118 Nb549ac343e884b0b8c8476b19043468f schema:name dimensions_id
    119 schema:value pub.1112058054
    120 rdf:type schema:PropertyValue
    121 Nc1c2824ef3244813b8987fef052b8f04 schema:issueNumber 4
    122 rdf:type schema:PublicationIssue
    123 Nc6223af3d1f9451fb662b93913ecde2e schema:affiliation https://www.grid.ac/institutes/grid.17635.36
    124 schema:familyName Oh
    125 schema:givenName Sang-Hyun
    126 rdf:type schema:Person
    127 Nd30211ca7bc64a74900f1be6bae11783 schema:affiliation https://www.grid.ac/institutes/grid.17635.36
    128 schema:familyName Lee
    129 schema:givenName In-Ho
    130 rdf:type schema:Person
    131 Ne4d85d08eb8c4060953d1608d47461ec rdf:first N04ad7c803d3440fc9efff1d126cb6be2
    132 rdf:rest N5a4c24fd67db4709aaca306c5e297adf
    133 Nf43e23154b8042479a9269d3d996a481 schema:affiliation https://www.grid.ac/institutes/grid.481554.9
    134 schema:familyName Avouris
    135 schema:givenName Phaedon
    136 rdf:type schema:Person
    137 Nf482988533374fcf8c747ffe7be5b55e rdf:first Nd30211ca7bc64a74900f1be6bae11783
    138 rdf:rest Ne4d85d08eb8c4060953d1608d47461ec
    139 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Physical Sciences
    141 rdf:type schema:DefinedTerm
    142 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Optical Physics
    144 rdf:type schema:DefinedTerm
    145 sg:grant.5300880 http://pending.schema.org/fundedItem sg:pub.10.1038/s41565-019-0363-8
    146 rdf:type schema:MonetaryGrant
    147 sg:grant.7568994 http://pending.schema.org/fundedItem sg:pub.10.1038/s41565-019-0363-8
    148 rdf:type schema:MonetaryGrant
    149 sg:journal.1037429 schema:issn 1748-3387
    150 1748-3395
    151 schema:name Nature Nanotechnology
    152 rdf:type schema:Periodical
    153 sg:pub.10.1038/nature10067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013150355
    154 https://doi.org/10.1038/nature10067
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1038/nature11253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006010066
    157 https://doi.org/10.1038/nature11253
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1038/nature11254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033742220
    160 https://doi.org/10.1038/nature11254
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1038/ncomms12334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018811675
    163 https://doi.org/10.1038/ncomms12334
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1038/ncomms1787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041148459
    166 https://doi.org/10.1038/ncomms1787
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/ncomms2951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001693824
    169 https://doi.org/10.1038/ncomms2951
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/nmat4169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020461414
    172 https://doi.org/10.1038/nmat4169
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/nmat4755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013808003
    175 https://doi.org/10.1038/nmat4755
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/nmat4792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042942708
    178 https://doi.org/10.1038/nmat4792
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/nnano.2010.90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030344359
    181 https://doi.org/10.1038/nnano.2010.90
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/nnano.2011.146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007038178
    184 https://doi.org/10.1038/nnano.2011.146
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/nnano.2014.215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008640603
    187 https://doi.org/10.1038/nnano.2014.215
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/nnano.2014.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017144522
    190 https://doi.org/10.1038/nnano.2014.31
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/nnano.2016.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017246309
    193 https://doi.org/10.1038/nnano.2016.185
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/nphoton.2011.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052113440
    196 https://doi.org/10.1038/nphoton.2011.102
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/nphoton.2011.177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027811755
    199 https://doi.org/10.1038/nphoton.2011.177
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/nphoton.2013.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009176316
    202 https://doi.org/10.1038/nphoton.2013.57
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/nphoton.2016.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028127334
    205 https://doi.org/10.1038/nphoton.2016.15
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/nphoton.2017.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085730972
    208 https://doi.org/10.1038/nphoton.2017.75
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1002/adma.200803616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004976958
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/j.ssc.2011.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036587442
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1021/acs.nanolett.7b00359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085296956
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1021/acs.nanolett.7b04393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100287790
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1021/acs.nanolett.7b05295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100992856
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1021/acs.nanolett.8b01273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104514450
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1021/acsphotonics.7b00654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092142045
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1021/acsphotonics.8b00062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101406960
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1021/nl2005737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001585577
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1021/nl201771h schema:sameAs https://app.dimensions.ai/details/publication/pub.1030038839
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1021/nl301774e schema:sameAs https://app.dimensions.ai/details/publication/pub.1056219469
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1021/nl404824w schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220617
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1021/nn1008808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056222616
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1021/nn203377t schema:sameAs https://app.dimensions.ai/details/publication/pub.1048095000
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1021/nn403282x schema:sameAs https://app.dimensions.ai/details/publication/pub.1056225447
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1021/nn406627u schema:sameAs https://app.dimensions.ai/details/publication/pub.1026971401
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1039/c6ra23727d schema:sameAs https://app.dimensions.ai/details/publication/pub.1001682230
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1063/1.114446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057672431
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1063/1.3205115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057918777
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1073/pnas.0907459106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006068386
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1088/1367-2630/15/6/063020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059136157
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1088/1367-2630/8/12/318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038803669
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1103/physrev.177.1231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060440302
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1103/physrevapplied.9.034021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101728664
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1103/physrevb.75.205418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020457785
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1103/physrevb.80.205405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025461372
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1103/physrevb.80.245435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060631227
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1103/physrevb.84.195446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011620871
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1103/physrevb.86.195408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008295076
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1103/physrevb.90.041407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007122197
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1103/physrevb.90.165409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009533070
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1103/physrevlett.111.247401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003084792
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1126/science.1174655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046042442
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1126/science.1235547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030349025
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1126/science.aab2051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062665788
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1126/science.aan2735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085942191
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1126/science.aar8438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103524170
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1364/ao.26.000744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065101576
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1364/ao.51.006789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065128412
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1364/oe.20.011953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043786407
    289 rdf:type schema:CreativeWork
    290 https://www.grid.ac/institutes/grid.17635.36 schema:alternateName University of Minnesota
    291 schema:name Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
    292 rdf:type schema:Organization
    293 https://www.grid.ac/institutes/grid.481554.9 schema:alternateName IBM Research – Thomas J. Watson Research Center
    294 schema:name IBM T. J. Watson Research Center, Yorktown Heights, New York, NY, USA
    295 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...