Electrically controlled nuclear polarization of individual atoms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11-05

AUTHORS

Kai Yang, Philip Willke, Yujeong Bae, Alejandro Ferrón, Jose L. Lado, Arzhang Ardavan, Joaquín Fernández-Rossier, Andreas J. Heinrich, Christopher P. Lutz

ABSTRACT

Nuclear spins serve as sensitive probes in chemistry1 and materials science2 and are promising candidates for quantum information processing3-6. NMR, the resonant control of nuclear spins, is a powerful tool for probing local magnetic environments in condensed matter systems, which range from magnetic ordering in high-temperature superconductors7,8 and spin liquids9 to quantum magnetism in nanomagnets10,11. Increasing the sensitivity of NMR to the single-atom scale is challenging as it requires a strong polarization of nuclear spins, well in excess of the low polarizations obtained at thermal equilibrium, as well as driving and detecting them individually4,5,12. Strong nuclear spin polarization, known as hyperpolarization, can be achieved through hyperfine coupling with electron spins2. The fundamental mechanism is the conservation of angular momentum: an electron spin flips and a nuclear spin flops. The nuclear hyperpolarization enables applications such as in vivo magnetic resonance imaging using nanoparticles13, and is harnessed for spin-based quantum information processing in quantum dots14 and doped silicon15-17. Here we polarize the nuclear spins of individual copper atoms on a surface using a spin-polarized current in a scanning tunnelling microscope. By employing the electron-nuclear flip-flop hyperfine interaction, the spin angular momentum is transferred from tunnelling electrons to the nucleus of individual Cu atoms. The direction and magnitude of the nuclear polarization is controlled by the direction and amplitude of the current. The nuclear polarization permits the detection of the NMR of individual Cu atoms, which is used to sense the local magnetic environment of the Cu electron spin. More... »

PAGES

1-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41565-018-0296-7

DOI

http://dx.doi.org/10.1038/s41565-018-0296-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107954790

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30397285


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Almaden Research Center, San Jose, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Kai", 
        "id": "sg:person.01324517104.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324517104.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ewha Womans University", 
          "id": "https://www.grid.ac/institutes/grid.255649.9", 
          "name": [
            "IBM Almaden Research Center, San Jose, CA, USA", 
            "Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea", 
            "Department of Physics, Ewha Womans University, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Willke", 
        "givenName": "Philip", 
        "id": "sg:person.01204627426.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204627426.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ewha Womans University", 
          "id": "https://www.grid.ac/institutes/grid.255649.9", 
          "name": [
            "IBM Almaden Research Center, San Jose, CA, USA", 
            "Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea", 
            "Department of Physics, Ewha Womans University, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bae", 
        "givenName": "Yujeong", 
        "id": "sg:person.010753467634.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010753467634.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of the Northeast", 
          "id": "https://www.grid.ac/institutes/grid.412235.3", 
          "name": [
            "Instituto de Modelado e Innovaci\u00f3n Tecnol\u00f3gica (CONICET-UNNE) and Facultad de Ciencias Exactas, Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferr\u00f3n", 
        "givenName": "Alejandro", 
        "id": "sg:person.01146052004.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146052004.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "QuantaLab, International Iberian Nanotechnology Laboratory (INL), Braga, Portugal", 
            "Institute for Theoretical Physics, ETH Zurich, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lado", 
        "givenName": "Jose L.", 
        "id": "sg:person.0763445424.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763445424.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ardavan", 
        "givenName": "Arzhang", 
        "id": "sg:person.01205636543.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205636543.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Alicante", 
          "id": "https://www.grid.ac/institutes/grid.5268.9", 
          "name": [
            "QuantaLab, International Iberian Nanotechnology Laboratory (INL), Braga, Portugal", 
            "Departamento de F\u00edsica Aplicada, Universidad de Alicante, San Vicente del Raspeig, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fern\u00e1ndez-Rossier", 
        "givenName": "Joaqu\u00edn", 
        "id": "sg:person.01262530315.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262530315.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ewha Womans University", 
          "id": "https://www.grid.ac/institutes/grid.255649.9", 
          "name": [
            "Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea", 
            "Department of Physics, Ewha Womans University, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heinrich", 
        "givenName": "Andreas J.", 
        "id": "sg:person.01052133663.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052133663.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Almaden Research Center, San Jose, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lutz", 
        "givenName": "Christopher P.", 
        "id": "sg:person.01222067242.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222067242.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.85.3496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002314509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.3496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002314509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004724914", 
          "https://doi.org/10.1038/nphys2794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssnmr.2010.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005197527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415281a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006385194", 
          "https://doi.org/10.1038/415281a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415281a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006385194", 
          "https://doi.org/10.1038/415281a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1101077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006829422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007894499", 
          "https://doi.org/10.1038/nnano.2013.117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.085122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013130456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.085122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013130456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014650131", 
          "https://doi.org/10.1038/nnano.2013.65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1249802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015869913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017992352", 
          "https://doi.org/10.1038/nphys1072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030860435", 
          "https://doi.org/10.1038/nphys1616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033884514", 
          "https://doi.org/10.1038/nature09696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-32627-8_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035626900", 
          "https://doi.org/10.1007/3-540-32627-8_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035778153", 
          "https://doi.org/10.1038/nature10345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.267204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037892276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.267204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037892276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040830200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040830200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041652427", 
          "https://doi.org/10.1038/nature12011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aac8703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042668239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043255278", 
          "https://doi.org/10.1038/nmat3499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.027601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043487610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.027601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043487610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature16984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047595349", 
          "https://doi.org/10.1038/nature16984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050456440", 
          "https://doi.org/10.1038/nmat2828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050456440", 
          "https://doi.org/10.1038/nmat2828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1231675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052492900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052802784", 
          "https://doi.org/10.1038/nphys3965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100860a007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055682965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.105.581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.105.581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.057601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060761121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.057601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060761121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.63.1700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060799499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.63.1700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060799499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1139831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062455316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2017.154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091161771", 
          "https://doi.org/10.1038/nnano.2017.154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2017.154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091161771", 
          "https://doi.org/10.1038/nnano.2017.154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.227206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099785797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.227206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099785797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aat7047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107706405"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-05", 
    "datePublishedReg": "2018-11-05", 
    "description": "Nuclear spins serve as sensitive probes in chemistry1 and materials science2 and are promising candidates for quantum information processing3-6. NMR, the resonant control of nuclear spins, is a powerful tool for probing local magnetic environments in condensed matter systems, which range from magnetic ordering in high-temperature superconductors7,8 and spin liquids9 to quantum magnetism in nanomagnets10,11. Increasing the sensitivity of NMR to the single-atom scale is challenging as it requires a strong polarization of nuclear spins, well in excess of the low polarizations obtained at thermal equilibrium, as well as driving and detecting them individually4,5,12. Strong nuclear spin polarization, known as hyperpolarization, can be achieved through hyperfine coupling with electron spins2. The fundamental mechanism is the conservation of angular momentum: an electron spin flips and a nuclear spin flops. The nuclear hyperpolarization enables applications such as in vivo magnetic resonance imaging using nanoparticles13, and is harnessed for spin-based quantum information processing in quantum dots14 and doped silicon15-17. Here we polarize the nuclear spins of individual copper atoms on a surface using a spin-polarized current in a scanning tunnelling microscope. By employing the electron-nuclear flip-flop hyperfine interaction, the spin angular momentum is transferred from tunnelling electrons to the nucleus of individual Cu atoms. The direction and magnitude of the nuclear polarization is controlled by the direction and amplitude of the current. The nuclear polarization permits the detection of the NMR of individual Cu atoms, which is used to sense the local magnetic environment of the Cu electron spin.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41565-018-0296-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7611721", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2759926", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "type": "Periodical"
      }
    ], 
    "name": "Electrically controlled nuclear polarization of individual atoms", 
    "pagination": "1-6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "84496ddc559e8ffacc027e45c9b65cef75df41caa3c60a3f276702dd0b60e278"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30397285"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101283273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41565-018-0296-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107954790"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41565-018-0296-7", 
      "https://app.dimensions.ai/details/publication/pub.1107954790"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000578.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41565-018-0296-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41565-018-0296-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41565-018-0296-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41565-018-0296-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41565-018-0296-7'


 

This table displays all metadata directly associated to this object as RDF triples.

253 TRIPLES      21 PREDICATES      58 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41565-018-0296-7 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author Ncc795cd3e9bf417a80de70e5384ea9a1
4 schema:citation sg:pub.10.1007/3-540-32627-8_10
5 sg:pub.10.1038/415281a
6 sg:pub.10.1038/nature09696
7 sg:pub.10.1038/nature10345
8 sg:pub.10.1038/nature12011
9 sg:pub.10.1038/nature16984
10 sg:pub.10.1038/nmat2828
11 sg:pub.10.1038/nmat3499
12 sg:pub.10.1038/nnano.2013.117
13 sg:pub.10.1038/nnano.2013.65
14 sg:pub.10.1038/nnano.2017.154
15 sg:pub.10.1038/nphys1072
16 sg:pub.10.1038/nphys1616
17 sg:pub.10.1038/nphys2794
18 sg:pub.10.1038/nphys3965
19 https://doi.org/10.1016/j.ssnmr.2010.04.001
20 https://doi.org/10.1021/j100860a007
21 https://doi.org/10.1103/physrev.105.581
22 https://doi.org/10.1103/physrevb.90.085122
23 https://doi.org/10.1103/physrevlett.102.027601
24 https://doi.org/10.1103/physrevlett.110.057601
25 https://doi.org/10.1103/physrevlett.119.227206
26 https://doi.org/10.1103/physrevlett.63.1700
27 https://doi.org/10.1103/physrevlett.85.3496
28 https://doi.org/10.1103/physrevlett.97.267204
29 https://doi.org/10.1103/revmodphys.85.79
30 https://doi.org/10.1126/science.1101077
31 https://doi.org/10.1126/science.1139831
32 https://doi.org/10.1126/science.1231675
33 https://doi.org/10.1126/science.1249802
34 https://doi.org/10.1126/science.aac8703
35 https://doi.org/10.1126/science.aat7047
36 schema:datePublished 2018-11-05
37 schema:datePublishedReg 2018-11-05
38 schema:description Nuclear spins serve as sensitive probes in chemistry<sup>1</sup> and materials science<sup>2</sup> and are promising candidates for quantum information processing<sup>3-6</sup>. NMR, the resonant control of nuclear spins, is a powerful tool for probing local magnetic environments in condensed matter systems, which range from magnetic ordering in high-temperature superconductors<sup>7,8</sup> and spin liquids<sup>9</sup> to quantum magnetism in nanomagnets<sup>10,11</sup>. Increasing the sensitivity of NMR to the single-atom scale is challenging as it requires a strong polarization of nuclear spins, well in excess of the low polarizations obtained at thermal equilibrium, as well as driving and detecting them individually<sup>4,5,12</sup>. Strong nuclear spin polarization, known as hyperpolarization, can be achieved through hyperfine coupling with electron spins<sup>2</sup>. The fundamental mechanism is the conservation of angular momentum: an electron spin flips and a nuclear spin flops. The nuclear hyperpolarization enables applications such as in vivo magnetic resonance imaging using nanoparticles<sup>13</sup>, and is harnessed for spin-based quantum information processing in quantum dots<sup>14</sup> and doped silicon<sup>15-17</sup>. Here we polarize the nuclear spins of individual copper atoms on a surface using a spin-polarized current in a scanning tunnelling microscope. By employing the electron-nuclear flip-flop hyperfine interaction, the spin angular momentum is transferred from tunnelling electrons to the nucleus of individual Cu atoms. The direction and magnitude of the nuclear polarization is controlled by the direction and amplitude of the current. The nuclear polarization permits the detection of the NMR of individual Cu atoms, which is used to sense the local magnetic environment of the Cu electron spin.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf sg:journal.1037429
43 schema:name Electrically controlled nuclear polarization of individual atoms
44 schema:pagination 1-6
45 schema:productId N0e91106e3fd344a3a16947f12e400359
46 N160bc7e35b30460986bc9ec309bde422
47 N4930159c48fc4131b54cc0b5d0b78882
48 N827192ca8d5546c99ef5680b3d62e4db
49 Nded2da4b7a984a70b2a591f358a12557
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107954790
51 https://doi.org/10.1038/s41565-018-0296-7
52 schema:sdDatePublished 2019-04-10T17:41
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nb21916c6bf6740f7b6afa03031b64804
55 schema:url https://www.nature.com/articles/s41565-018-0296-7
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0e91106e3fd344a3a16947f12e400359 schema:name pubmed_id
60 schema:value 30397285
61 rdf:type schema:PropertyValue
62 N160bc7e35b30460986bc9ec309bde422 schema:name dimensions_id
63 schema:value pub.1107954790
64 rdf:type schema:PropertyValue
65 N4930159c48fc4131b54cc0b5d0b78882 schema:name doi
66 schema:value 10.1038/s41565-018-0296-7
67 rdf:type schema:PropertyValue
68 N643d039bebae4c4e93b068e0a8060126 rdf:first sg:person.01205636543.25
69 rdf:rest Na2eaf3f87bcb4aa5ae6f64bf93ad2bcd
70 N6a2b217abe9f4226ab97f909f5675fd4 rdf:first sg:person.010753467634.99
71 rdf:rest Ne0ea15f5ebd9465aae93d3b811b97846
72 N827192ca8d5546c99ef5680b3d62e4db schema:name readcube_id
73 schema:value 84496ddc559e8ffacc027e45c9b65cef75df41caa3c60a3f276702dd0b60e278
74 rdf:type schema:PropertyValue
75 Na1b422ae0850422cb2a28f52b576ae22 rdf:first sg:person.01204627426.32
76 rdf:rest N6a2b217abe9f4226ab97f909f5675fd4
77 Na2eaf3f87bcb4aa5ae6f64bf93ad2bcd rdf:first sg:person.01262530315.42
78 rdf:rest Nf4d38b3035fb4fb2aab1a202c0306ef2
79 Na5765e658cd440b592cb4044a1553b91 rdf:first sg:person.01222067242.67
80 rdf:rest rdf:nil
81 Nb21916c6bf6740f7b6afa03031b64804 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 Ncc795cd3e9bf417a80de70e5384ea9a1 rdf:first sg:person.01324517104.00
84 rdf:rest Na1b422ae0850422cb2a28f52b576ae22
85 Nded2da4b7a984a70b2a591f358a12557 schema:name nlm_unique_id
86 schema:value 101283273
87 rdf:type schema:PropertyValue
88 Ne0ea15f5ebd9465aae93d3b811b97846 rdf:first sg:person.01146052004.16
89 rdf:rest Nfa806ff2a89c4cbcac0d73e76d304b0a
90 Nf4d38b3035fb4fb2aab1a202c0306ef2 rdf:first sg:person.01052133663.59
91 rdf:rest Na5765e658cd440b592cb4044a1553b91
92 Nfa806ff2a89c4cbcac0d73e76d304b0a rdf:first sg:person.0763445424.70
93 rdf:rest N643d039bebae4c4e93b068e0a8060126
94 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
95 schema:name Physical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
98 schema:name Condensed Matter Physics
99 rdf:type schema:DefinedTerm
100 sg:grant.2759926 http://pending.schema.org/fundedItem sg:pub.10.1038/s41565-018-0296-7
101 rdf:type schema:MonetaryGrant
102 sg:grant.7611721 http://pending.schema.org/fundedItem sg:pub.10.1038/s41565-018-0296-7
103 rdf:type schema:MonetaryGrant
104 sg:journal.1037429 schema:issn 1748-3387
105 1748-3395
106 schema:name Nature Nanotechnology
107 rdf:type schema:Periodical
108 sg:person.01052133663.59 schema:affiliation https://www.grid.ac/institutes/grid.255649.9
109 schema:familyName Heinrich
110 schema:givenName Andreas J.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052133663.59
112 rdf:type schema:Person
113 sg:person.010753467634.99 schema:affiliation https://www.grid.ac/institutes/grid.255649.9
114 schema:familyName Bae
115 schema:givenName Yujeong
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010753467634.99
117 rdf:type schema:Person
118 sg:person.01146052004.16 schema:affiliation https://www.grid.ac/institutes/grid.412235.3
119 schema:familyName Ferrón
120 schema:givenName Alejandro
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146052004.16
122 rdf:type schema:Person
123 sg:person.01204627426.32 schema:affiliation https://www.grid.ac/institutes/grid.255649.9
124 schema:familyName Willke
125 schema:givenName Philip
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204627426.32
127 rdf:type schema:Person
128 sg:person.01205636543.25 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
129 schema:familyName Ardavan
130 schema:givenName Arzhang
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205636543.25
132 rdf:type schema:Person
133 sg:person.01222067242.67 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
134 schema:familyName Lutz
135 schema:givenName Christopher P.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222067242.67
137 rdf:type schema:Person
138 sg:person.01262530315.42 schema:affiliation https://www.grid.ac/institutes/grid.5268.9
139 schema:familyName Fernández-Rossier
140 schema:givenName Joaquín
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262530315.42
142 rdf:type schema:Person
143 sg:person.01324517104.00 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
144 schema:familyName Yang
145 schema:givenName Kai
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324517104.00
147 rdf:type schema:Person
148 sg:person.0763445424.70 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
149 schema:familyName Lado
150 schema:givenName Jose L.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763445424.70
152 rdf:type schema:Person
153 sg:pub.10.1007/3-540-32627-8_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035626900
154 https://doi.org/10.1007/3-540-32627-8_10
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/415281a schema:sameAs https://app.dimensions.ai/details/publication/pub.1006385194
157 https://doi.org/10.1038/415281a
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nature09696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033884514
160 https://doi.org/10.1038/nature09696
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nature10345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035778153
163 https://doi.org/10.1038/nature10345
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nature12011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041652427
166 https://doi.org/10.1038/nature12011
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nature16984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047595349
169 https://doi.org/10.1038/nature16984
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nmat2828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050456440
172 https://doi.org/10.1038/nmat2828
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nmat3499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043255278
175 https://doi.org/10.1038/nmat3499
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nnano.2013.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007894499
178 https://doi.org/10.1038/nnano.2013.117
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nnano.2013.65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014650131
181 https://doi.org/10.1038/nnano.2013.65
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nnano.2017.154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091161771
184 https://doi.org/10.1038/nnano.2017.154
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nphys1072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017992352
187 https://doi.org/10.1038/nphys1072
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nphys1616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030860435
190 https://doi.org/10.1038/nphys1616
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/nphys2794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004724914
193 https://doi.org/10.1038/nphys2794
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/nphys3965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052802784
196 https://doi.org/10.1038/nphys3965
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.ssnmr.2010.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005197527
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1021/j100860a007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055682965
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrev.105.581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060418669
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevb.90.085122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013130456
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevlett.102.027601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043487610
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevlett.110.057601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060761121
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevlett.119.227206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099785797
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevlett.63.1700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060799499
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevlett.85.3496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002314509
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physrevlett.97.267204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037892276
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/revmodphys.85.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040830200
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1126/science.1101077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006829422
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1126/science.1139831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062455316
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1126/science.1231675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052492900
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1126/science.1249802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015869913
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1126/science.aac8703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042668239
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1126/science.aat7047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107706405
231 rdf:type schema:CreativeWork
232 https://www.grid.ac/institutes/grid.255649.9 schema:alternateName Ewha Womans University
233 schema:name Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea
234 Department of Physics, Ewha Womans University, Seoul, Republic of Korea
235 IBM Almaden Research Center, San Jose, CA, USA
236 rdf:type schema:Organization
237 https://www.grid.ac/institutes/grid.412235.3 schema:alternateName National University of the Northeast
238 schema:name Instituto de Modelado e Innovación Tecnológica (CONICET-UNNE) and Facultad de Ciencias Exactas, Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina
239 rdf:type schema:Organization
240 https://www.grid.ac/institutes/grid.481551.c schema:alternateName IBM Research - Almaden
241 schema:name IBM Almaden Research Center, San Jose, CA, USA
242 rdf:type schema:Organization
243 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
244 schema:name Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
245 rdf:type schema:Organization
246 https://www.grid.ac/institutes/grid.5268.9 schema:alternateName University of Alicante
247 schema:name Departamento de Física Aplicada, Universidad de Alicante, San Vicente del Raspeig, Spain
248 QuantaLab, International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
249 rdf:type schema:Organization
250 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
251 schema:name Institute for Theoretical Physics, ETH Zurich, Zurich, Switzerland
252 QuantaLab, International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
253 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...