Band structure engineering of 2D materials using patterned dielectric superlattices View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-07

AUTHORS

Carlos Forsythe, Xiaodong Zhou, Kenji Watanabe, Takashi Taniguchi, Abhay Pasupathy, Pilkyung Moon, Mikito Koshino, Philip Kim, Cory R. Dean

ABSTRACT

The ability to manipulate electrons in two-dimensional materials with external electric fields provides a route to synthetic band engineering. By imposing artificially designed and spatially periodic superlattice potentials, electronic properties can be further altered beyond the constraints of naturally occurring atomic crystals1-5. Here, we report a new approach to fabricate high-mobility superlattice devices by integrating surface dielectric patterning with atomically thin van der Waals materials. By separating the device assembly and superlattice fabrication processes, we address the intractable trade-off between device processing and mobility degradation that constrains superlattice engineering in conventional systems. The improved electrostatics of atomically thin materials allows smaller wavelength superlattice patterns relative to previous demonstrations. Moreover, we observe the formation of replica Dirac cones in ballistic graphene devices with sub-40 nm wavelength superlattices and report fractal Hofstadter spectra6-8 under large magnetic fields from superlattices with designed lattice symmetries that differ from that of the host crystal. Our results establish a robust and versatile technique for band structure engineering of graphene and related van der Waals materials with dynamic tunability. More... »

PAGES

566-571

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41565-018-0138-7

DOI

http://dx.doi.org/10.1038/s41565-018-0138-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103817427

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29736033


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Physics, Columbia University, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Forsythe", 
        "givenName": "Carlos", 
        "id": "sg:person.01345045132.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345045132.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "Department of Physics, Columbia University, New York, NY, USA", 
            "Laboratory of Advanced Materials, Fudan University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Xiaodong", 
        "id": "sg:person.0755116417.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755116417.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Kenji", 
        "id": "sg:person.010026307551.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026307551.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taniguchi", 
        "givenName": "Takashi", 
        "id": "sg:person.0765715521.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Physics, Columbia University, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pasupathy", 
        "givenName": "Abhay", 
        "id": "sg:person.01040032341.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040032341.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University Shanghai", 
          "id": "https://www.grid.ac/institutes/grid.449457.f", 
          "name": [
            "NYU Shanghai, Shanghai, China", 
            "NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moon", 
        "givenName": "Pilkyung", 
        "id": "sg:person.0710764644.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710764644.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Physics, Osaka University, Toyonaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koshino", 
        "givenName": "Mikito", 
        "id": "sg:person.015012636511.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012636511.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Physics, Harvard University, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Philip", 
        "id": "sg:person.0722660612.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722660612.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Physics, Columbia University, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dean", 
        "givenName": "Cory R.", 
        "id": "sg:person.01233365721.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233365721.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1021/nl3002205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002874697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005102686", 
          "https://doi.org/10.1038/nnano.2010.8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0268-1242/11/11s/022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008322257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.075438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010996889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.075438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010996889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1237240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011524156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.115421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014750654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.115421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014750654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1244358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016025802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017513054", 
          "https://doi.org/10.1038/nphys890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/26/30/303201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018434708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024857999", 
          "https://doi.org/10.1038/nature12385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026408867", 
          "https://doi.org/10.1038/nature12187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028219354", 
          "https://doi.org/10.1038/nnano.2012.193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl801752r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029532350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl801752r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029532350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039071679", 
          "https://doi.org/10.1038/nature12186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045595114", 
          "https://doi.org/10.1038/ncomms1577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.126804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049501903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.126804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049501903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.2220880243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052528064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b04414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055121166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl4006029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056219984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.100952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057648538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3662043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057994326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.180.633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060441367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.180.633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060441367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.14.2239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.14.2239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.19.6068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060525473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.19.6068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060525473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.28.6713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060533756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.28.6713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060533756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.195406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.195406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.4932672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062177658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaf1095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062667411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1147/rd.141.0061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063179989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/8/2/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064231682"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-07", 
    "datePublishedReg": "2018-07-01", 
    "description": "The ability to manipulate electrons in two-dimensional materials with external electric fields provides a route to synthetic band engineering. By imposing artificially designed and spatially periodic superlattice potentials, electronic properties can be further altered beyond the constraints of naturally occurring atomic crystals1-5. Here, we report a new approach to fabricate high-mobility superlattice devices by integrating surface dielectric patterning with atomically thin van der Waals materials. By separating the device assembly and superlattice fabrication processes, we address the intractable trade-off between device processing and mobility degradation that constrains superlattice engineering in conventional systems. The improved electrostatics of atomically thin materials allows smaller wavelength superlattice patterns relative to previous demonstrations. Moreover, we observe the formation of replica Dirac cones in ballistic graphene devices with sub-40\u2009nm wavelength superlattices and report fractal Hofstadter spectra6-8 under large magnetic fields from superlattices with designed lattice symmetries that differ from that of the host crystal. Our results establish a robust and versatile technique for band structure engineering of graphene and related van der Waals materials with dynamic tunability.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41565-018-0138-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5885411", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3123980", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3851220", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3075954", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Band structure engineering of 2D materials using patterned dielectric superlattices", 
    "pagination": "566-571", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6f33b8c7058646b05bffbd4a7b3d71f61ce015773d339e6ec473cb86b4c3929c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29736033"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101283273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41565-018-0138-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103817427"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41565-018-0138-7", 
      "https://app.dimensions.ai/details/publication/pub.1103817427"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41565-018-0138-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41565-018-0138-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41565-018-0138-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41565-018-0138-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41565-018-0138-7'


 

This table displays all metadata directly associated to this object as RDF triples.

250 TRIPLES      21 PREDICATES      60 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41565-018-0138-7 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nabeb65af62cd48c4838d36686710600a
4 schema:citation sg:pub.10.1038/nature12186
5 sg:pub.10.1038/nature12187
6 sg:pub.10.1038/nature12385
7 sg:pub.10.1038/ncomms1577
8 sg:pub.10.1038/nnano.2010.8
9 sg:pub.10.1038/nnano.2012.193
10 sg:pub.10.1038/nphys890
11 https://doi.org/10.1002/pssb.2220880243
12 https://doi.org/10.1021/acs.nanolett.5b04414
13 https://doi.org/10.1021/nl3002205
14 https://doi.org/10.1021/nl4006029
15 https://doi.org/10.1021/nl801752r
16 https://doi.org/10.1063/1.100952
17 https://doi.org/10.1063/1.3662043
18 https://doi.org/10.1088/0268-1242/11/11s/022
19 https://doi.org/10.1088/0953-8984/26/30/303201
20 https://doi.org/10.1103/physrev.180.633
21 https://doi.org/10.1103/physrevb.14.2239
22 https://doi.org/10.1103/physrevb.19.6068
23 https://doi.org/10.1103/physrevb.28.6713
24 https://doi.org/10.1103/physrevb.81.075438
25 https://doi.org/10.1103/physrevb.89.115421
26 https://doi.org/10.1103/physrevb.92.195406
27 https://doi.org/10.1103/physrevlett.101.126804
28 https://doi.org/10.1103/physrevlett.86.147
29 https://doi.org/10.1116/1.4932672
30 https://doi.org/10.1126/science.1237240
31 https://doi.org/10.1126/science.1244358
32 https://doi.org/10.1126/science.aaf1095
33 https://doi.org/10.1147/rd.141.0061
34 https://doi.org/10.1209/0295-5075/8/2/012
35 schema:datePublished 2018-07
36 schema:datePublishedReg 2018-07-01
37 schema:description The ability to manipulate electrons in two-dimensional materials with external electric fields provides a route to synthetic band engineering. By imposing artificially designed and spatially periodic superlattice potentials, electronic properties can be further altered beyond the constraints of naturally occurring atomic crystals<sup>1-5</sup>. Here, we report a new approach to fabricate high-mobility superlattice devices by integrating surface dielectric patterning with atomically thin van der Waals materials. By separating the device assembly and superlattice fabrication processes, we address the intractable trade-off between device processing and mobility degradation that constrains superlattice engineering in conventional systems. The improved electrostatics of atomically thin materials allows smaller wavelength superlattice patterns relative to previous demonstrations. Moreover, we observe the formation of replica Dirac cones in ballistic graphene devices with sub-40 nm wavelength superlattices and report fractal Hofstadter spectra<sup>6-8</sup> under large magnetic fields from superlattices with designed lattice symmetries that differ from that of the host crystal. Our results establish a robust and versatile technique for band structure engineering of graphene and related van der Waals materials with dynamic tunability.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf Nc6aa0da9781d4ea391424ad481a529ef
42 Nc7ccccd43df2434aaf18f9024d8752e6
43 sg:journal.1037429
44 schema:name Band structure engineering of 2D materials using patterned dielectric superlattices
45 schema:pagination 566-571
46 schema:productId N3faecc71a1434c8d82a4ca994b232ff8
47 N68e1e0195cb04e8dbd0161c9f4f4e927
48 N6aa699b65bde48058ffd9142b04969ca
49 N6e0ac82a621e4b62a743b9d9f5b81c0e
50 Nbecb9713ad32417b9315e441afcac544
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103817427
52 https://doi.org/10.1038/s41565-018-0138-7
53 schema:sdDatePublished 2019-04-10T21:33
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Na16a04873c384cbc94f5ae2459660056
56 schema:url https://www.nature.com/articles/s41565-018-0138-7
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N0bcd1496059340ffad9b69ff73499a97 rdf:first sg:person.0710764644.15
61 rdf:rest N6b90c03ab9824b94aa643e24221a43d8
62 N36f96cd15a5a4f30a15f488872924556 rdf:first sg:person.0755116417.33
63 rdf:rest Nfca370cb75f34621938fcedb90571169
64 N3faecc71a1434c8d82a4ca994b232ff8 schema:name nlm_unique_id
65 schema:value 101283273
66 rdf:type schema:PropertyValue
67 N684b1044882f423a8d23fd1fdc929640 rdf:first sg:person.0765715521.02
68 rdf:rest Nc63c76d0dcf64549ad35a00d663bba4a
69 N68e1e0195cb04e8dbd0161c9f4f4e927 schema:name pubmed_id
70 schema:value 29736033
71 rdf:type schema:PropertyValue
72 N6aa699b65bde48058ffd9142b04969ca schema:name doi
73 schema:value 10.1038/s41565-018-0138-7
74 rdf:type schema:PropertyValue
75 N6b90c03ab9824b94aa643e24221a43d8 rdf:first sg:person.015012636511.28
76 rdf:rest Ne939bec0ea574c038605e65ce208464d
77 N6e0ac82a621e4b62a743b9d9f5b81c0e schema:name dimensions_id
78 schema:value pub.1103817427
79 rdf:type schema:PropertyValue
80 Na16a04873c384cbc94f5ae2459660056 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Nabeb65af62cd48c4838d36686710600a rdf:first sg:person.01345045132.63
83 rdf:rest N36f96cd15a5a4f30a15f488872924556
84 Nbecb9713ad32417b9315e441afcac544 schema:name readcube_id
85 schema:value 6f33b8c7058646b05bffbd4a7b3d71f61ce015773d339e6ec473cb86b4c3929c
86 rdf:type schema:PropertyValue
87 Nc63c76d0dcf64549ad35a00d663bba4a rdf:first sg:person.01040032341.02
88 rdf:rest N0bcd1496059340ffad9b69ff73499a97
89 Nc6aa0da9781d4ea391424ad481a529ef schema:issueNumber 7
90 rdf:type schema:PublicationIssue
91 Nc7ccccd43df2434aaf18f9024d8752e6 schema:volumeNumber 13
92 rdf:type schema:PublicationVolume
93 Nd436fe46139f44a397c3e930e58c029a rdf:first sg:person.01233365721.66
94 rdf:rest rdf:nil
95 Ne939bec0ea574c038605e65ce208464d rdf:first sg:person.0722660612.29
96 rdf:rest Nd436fe46139f44a397c3e930e58c029a
97 Nfca370cb75f34621938fcedb90571169 rdf:first sg:person.010026307551.76
98 rdf:rest N684b1044882f423a8d23fd1fdc929640
99 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
100 schema:name Engineering
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
103 schema:name Materials Engineering
104 rdf:type schema:DefinedTerm
105 sg:grant.3075954 http://pending.schema.org/fundedItem sg:pub.10.1038/s41565-018-0138-7
106 rdf:type schema:MonetaryGrant
107 sg:grant.3123980 http://pending.schema.org/fundedItem sg:pub.10.1038/s41565-018-0138-7
108 rdf:type schema:MonetaryGrant
109 sg:grant.3851220 http://pending.schema.org/fundedItem sg:pub.10.1038/s41565-018-0138-7
110 rdf:type schema:MonetaryGrant
111 sg:grant.5885411 http://pending.schema.org/fundedItem sg:pub.10.1038/s41565-018-0138-7
112 rdf:type schema:MonetaryGrant
113 sg:journal.1037429 schema:issn 1748-3387
114 1748-3395
115 schema:name Nature Nanotechnology
116 rdf:type schema:Periodical
117 sg:person.010026307551.76 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
118 schema:familyName Watanabe
119 schema:givenName Kenji
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026307551.76
121 rdf:type schema:Person
122 sg:person.01040032341.02 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
123 schema:familyName Pasupathy
124 schema:givenName Abhay
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040032341.02
126 rdf:type schema:Person
127 sg:person.01233365721.66 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
128 schema:familyName Dean
129 schema:givenName Cory R.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233365721.66
131 rdf:type schema:Person
132 sg:person.01345045132.63 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
133 schema:familyName Forsythe
134 schema:givenName Carlos
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345045132.63
136 rdf:type schema:Person
137 sg:person.015012636511.28 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
138 schema:familyName Koshino
139 schema:givenName Mikito
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012636511.28
141 rdf:type schema:Person
142 sg:person.0710764644.15 schema:affiliation https://www.grid.ac/institutes/grid.449457.f
143 schema:familyName Moon
144 schema:givenName Pilkyung
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710764644.15
146 rdf:type schema:Person
147 sg:person.0722660612.29 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
148 schema:familyName Kim
149 schema:givenName Philip
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722660612.29
151 rdf:type schema:Person
152 sg:person.0755116417.33 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
153 schema:familyName Zhou
154 schema:givenName Xiaodong
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755116417.33
156 rdf:type schema:Person
157 sg:person.0765715521.02 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
158 schema:familyName Taniguchi
159 schema:givenName Takashi
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02
161 rdf:type schema:Person
162 sg:pub.10.1038/nature12186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039071679
163 https://doi.org/10.1038/nature12186
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nature12187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026408867
166 https://doi.org/10.1038/nature12187
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nature12385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024857999
169 https://doi.org/10.1038/nature12385
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/ncomms1577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045595114
172 https://doi.org/10.1038/ncomms1577
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nnano.2010.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005102686
175 https://doi.org/10.1038/nnano.2010.8
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nnano.2012.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028219354
178 https://doi.org/10.1038/nnano.2012.193
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nphys890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017513054
181 https://doi.org/10.1038/nphys890
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1002/pssb.2220880243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052528064
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1021/acs.nanolett.5b04414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055121166
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1021/nl3002205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002874697
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1021/nl4006029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056219984
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/nl801752r schema:sameAs https://app.dimensions.ai/details/publication/pub.1029532350
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1063/1.100952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057648538
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1063/1.3662043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057994326
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1088/0268-1242/11/11s/022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008322257
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1088/0953-8984/26/30/303201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018434708
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrev.180.633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060441367
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevb.14.2239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060521465
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevb.19.6068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060525473
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevb.28.6713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060533756
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevb.81.075438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010996889
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrevb.89.115421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014750654
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevb.92.195406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060647848
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevlett.101.126804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049501903
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevlett.86.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060822573
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1116/1.4932672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062177658
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1126/science.1237240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011524156
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1126/science.1244358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016025802
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1126/science.aaf1095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062667411
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1147/rd.141.0061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063179989
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1209/0295-5075/8/2/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064231682
230 rdf:type schema:CreativeWork
231 https://www.grid.ac/institutes/grid.136593.b schema:alternateName Osaka University
232 schema:name Department of Physics, Osaka University, Toyonaka, Japan
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.21729.3f schema:alternateName Columbia University
235 schema:name Department of Physics, Columbia University, New York, NY, USA
236 rdf:type schema:Organization
237 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
238 schema:name National Institute for Materials Science, Tsukuba, Japan
239 rdf:type schema:Organization
240 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
241 schema:name Department of Physics, Harvard University, Cambridge, MA, USA
242 rdf:type schema:Organization
243 https://www.grid.ac/institutes/grid.449457.f schema:alternateName New York University Shanghai
244 schema:name NYU Shanghai, Shanghai, China
245 NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai, China
246 rdf:type schema:Organization
247 https://www.grid.ac/institutes/grid.8547.e schema:alternateName Fudan University
248 schema:name Department of Physics, Columbia University, New York, NY, USA
249 Laboratory of Advanced Materials, Fudan University, Shanghai, China
250 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...