Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05

AUTHORS

Harry Mönig, Saeed Amirjalayer, Alexander Timmer, Zhixin Hu, Lacheng Liu, Oscar Díaz Arado, Marvin Cnudde, Cristian Alejandro Strassert, Wei Ji, Michael Rohlfing, Harald Fuchs

ABSTRACT

Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds1-5. The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs 1,6-9). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation8-12. Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip13-15. Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N-Au-N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly. More... »

PAGES

371-375

References to SciGraph publications

  • 2017-05. Synthesis and characterization of triangulene in NATURE NANOTECHNOLOGY
  • 2014-12. Mapping the force field of a hydrogen-bonded assembly in NATURE COMMUNICATIONS
  • 2012-04. Imaging the charge distribution within a single molecule in NATURE NANOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41565-018-0104-4

    DOI

    http://dx.doi.org/10.1038/s41565-018-0104-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103195958

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29632397


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "CeNTech", 
              "id": "https://www.grid.ac/institutes/grid.452332.1", 
              "name": [
                "Physikalisches Institut, Westf\u00e4lische Wilhelms-Universit\u00e4t M\u00fcnster, M\u00fcnster, Germany", 
                "Center for Nanotechnology, M\u00fcnster, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "M\u00f6nig", 
            "givenName": "Harry", 
            "id": "sg:person.01305206135.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305206135.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CeNTech", 
              "id": "https://www.grid.ac/institutes/grid.452332.1", 
              "name": [
                "Physikalisches Institut, Westf\u00e4lische Wilhelms-Universit\u00e4t M\u00fcnster, M\u00fcnster, Germany", 
                "Center for Nanotechnology, M\u00fcnster, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Amirjalayer", 
            "givenName": "Saeed", 
            "id": "sg:person.01363546572.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363546572.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CeNTech", 
              "id": "https://www.grid.ac/institutes/grid.452332.1", 
              "name": [
                "Physikalisches Institut, Westf\u00e4lische Wilhelms-Universit\u00e4t M\u00fcnster, M\u00fcnster, Germany", 
                "Center for Nanotechnology, M\u00fcnster, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Timmer", 
            "givenName": "Alexander", 
            "id": "sg:person.0624715170.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624715170.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tianjin University", 
              "id": "https://www.grid.ac/institutes/grid.33763.32", 
              "name": [
                "Center for Joint Quantum Studies and Department of Physics, Tianjin University, Tianjin, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Zhixin", 
            "id": "sg:person.01211477472.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211477472.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CeNTech", 
              "id": "https://www.grid.ac/institutes/grid.452332.1", 
              "name": [
                "Physikalisches Institut, Westf\u00e4lische Wilhelms-Universit\u00e4t M\u00fcnster, M\u00fcnster, Germany", 
                "Center for Nanotechnology, M\u00fcnster, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Lacheng", 
            "id": "sg:person.012630070615.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012630070615.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CeNTech", 
              "id": "https://www.grid.ac/institutes/grid.452332.1", 
              "name": [
                "Physikalisches Institut, Westf\u00e4lische Wilhelms-Universit\u00e4t M\u00fcnster, M\u00fcnster, Germany", 
                "Center for Nanotechnology, M\u00fcnster, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Arado", 
            "givenName": "Oscar D\u00edaz", 
            "id": "sg:person.0673030370.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673030370.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CeNTech", 
              "id": "https://www.grid.ac/institutes/grid.452332.1", 
              "name": [
                "Physikalisches Institut, Westf\u00e4lische Wilhelms-Universit\u00e4t M\u00fcnster, M\u00fcnster, Germany", 
                "Center for Nanotechnology, M\u00fcnster, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cnudde", 
            "givenName": "Marvin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CeNTech", 
              "id": "https://www.grid.ac/institutes/grid.452332.1", 
              "name": [
                "Physikalisches Institut, Westf\u00e4lische Wilhelms-Universit\u00e4t M\u00fcnster, M\u00fcnster, Germany", 
                "Center for Nanotechnology, M\u00fcnster, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Strassert", 
            "givenName": "Cristian Alejandro", 
            "id": "sg:person.01275120201.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275120201.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Renmin University of China", 
              "id": "https://www.grid.ac/institutes/grid.24539.39", 
              "name": [
                "Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Renmin University of China, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ji", 
            "givenName": "Wei", 
            "id": "sg:person.07536771640.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07536771640.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of M\u00fcnster", 
              "id": "https://www.grid.ac/institutes/grid.5949.1", 
              "name": [
                "Institut f\u00fcr Festk\u00f6rpertheorie, Westf\u00e4lische Wilhelms-Universit\u00e4t M\u00fcnster, M\u00fcnster, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rohlfing", 
            "givenName": "Michael", 
            "id": "sg:person.01332660227.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332660227.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CeNTech", 
              "id": "https://www.grid.ac/institutes/grid.452332.1", 
              "name": [
                "Physikalisches Institut, Westf\u00e4lische Wilhelms-Universit\u00e4t M\u00fcnster, M\u00fcnster, Germany", 
                "Center for Nanotechnology, M\u00fcnster, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fuchs", 
            "givenName": "Harald", 
            "id": "sg:person.0744012231.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744012231.62"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1126/science.1225621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005798390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b508541a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007773272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b508541a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007773272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.116.096102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008724629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.116.096102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008724629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/14/11/302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013140491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1242603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013218872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1176210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015696599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1176210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015696599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1238187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017318659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/anie.201002960", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018719253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/anie.201002960", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018719253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms4931", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019633291", 
              "https://doi.org/10.1038/ncomms4931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/22/2/022201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021949538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/22/2/022201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021949538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.113.186102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028689254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.113.186102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028689254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.112.166102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028888807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.112.166102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028888807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1249502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032231666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.83.195131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040559330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.83.195131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040559330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja104332t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041358691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja104332t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041358691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.5b05251", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044617501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jcc.20495", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044734228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.90.085421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050209331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.90.085421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050209331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2012.20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050300004", 
              "https://doi.org/10.1038/nnano.2012.20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cclet.2016.08.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051856175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cclet.2016.08.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051856175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.92.246401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052519808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.92.246401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052519808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.jpcc.5b09889", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055110228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsnano.5b06513", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055137529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/j100096a001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055652737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp050962y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056060388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp050962y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056060388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nn4045358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056225612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.122948", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057687104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4793200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058069969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.13.5188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060521190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.13.5188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060521190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.50.17953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060573414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.50.17953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060573414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.11169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060581262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.11169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060581262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.59.1758", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060591374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.59.1758", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060591374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.76.115421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060622412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.76.115421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060622412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.155422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060640193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.155422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060640193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.086101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060759444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.086101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060759444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.67.855", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060803981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.67.855", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060803981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.2004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060817008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.2004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060817008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.254.5030.408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062542853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2016.305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083776848", 
              "https://doi.org/10.1038/nnano.2016.305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aai8625", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091787173"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-05", 
        "datePublishedReg": "2018-05-01", 
        "description": "Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds1-5. The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs 1,6-9). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation8-12. Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip13-15. Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N-Au-N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41565-018-0104-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1037429", 
            "issn": [
              "1748-3387", 
              "1748-3395"
            ], 
            "name": "Nature Nanotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "name": "Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips", 
        "pagination": "371-375", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41565-018-0104-4"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a86915a75bc5bf1719d1ec45035aac97b21199d3175d09a08d74b4690915e771"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103195958"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101283273"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29632397"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41565-018-0104-4", 
          "https://app.dimensions.ai/details/publication/pub.1103195958"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T08:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119714_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41565-018-0104-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41565-018-0104-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41565-018-0104-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41565-018-0104-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41565-018-0104-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    271 TRIPLES      21 PREDICATES      69 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41565-018-0104-4 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N117db313beaf44d6af12b63d1262407c
    4 schema:citation sg:pub.10.1038/ncomms4931
    5 sg:pub.10.1038/nnano.2012.20
    6 sg:pub.10.1038/nnano.2016.305
    7 https://doi.org/10.1002/anie.201002960
    8 https://doi.org/10.1002/jcc.20495
    9 https://doi.org/10.1016/j.cclet.2016.08.004
    10 https://doi.org/10.1021/acs.jpcc.5b09889
    11 https://doi.org/10.1021/acs.nanolett.5b05251
    12 https://doi.org/10.1021/acsnano.5b06513
    13 https://doi.org/10.1021/j100096a001
    14 https://doi.org/10.1021/ja104332t
    15 https://doi.org/10.1021/jp050962y
    16 https://doi.org/10.1021/nn4045358
    17 https://doi.org/10.1039/b508541a
    18 https://doi.org/10.1063/1.122948
    19 https://doi.org/10.1063/1.4793200
    20 https://doi.org/10.1088/0953-8984/14/11/302
    21 https://doi.org/10.1088/0953-8984/22/2/022201
    22 https://doi.org/10.1103/physrevb.13.5188
    23 https://doi.org/10.1103/physrevb.50.17953
    24 https://doi.org/10.1103/physrevb.54.11169
    25 https://doi.org/10.1103/physrevb.59.1758
    26 https://doi.org/10.1103/physrevb.76.115421
    27 https://doi.org/10.1103/physrevb.83.195131
    28 https://doi.org/10.1103/physrevb.86.155422
    29 https://doi.org/10.1103/physrevb.90.085421
    30 https://doi.org/10.1103/physrevlett.108.086101
    31 https://doi.org/10.1103/physrevlett.112.166102
    32 https://doi.org/10.1103/physrevlett.113.186102
    33 https://doi.org/10.1103/physrevlett.116.096102
    34 https://doi.org/10.1103/physrevlett.67.855
    35 https://doi.org/10.1103/physrevlett.80.2004
    36 https://doi.org/10.1103/physrevlett.92.246401
    37 https://doi.org/10.1126/science.1176210
    38 https://doi.org/10.1126/science.1225621
    39 https://doi.org/10.1126/science.1238187
    40 https://doi.org/10.1126/science.1242603
    41 https://doi.org/10.1126/science.1249502
    42 https://doi.org/10.1126/science.254.5030.408
    43 https://doi.org/10.1126/science.aai8625
    44 schema:datePublished 2018-05
    45 schema:datePublishedReg 2018-05-01
    46 schema:description Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds<sup>1-5</sup>. The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs <sup>1,6-9</sup>). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation<sup>8-12</sup>. Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip<sup>13-15</sup>. Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N-Au-N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly.
    47 schema:genre research_article
    48 schema:inLanguage en
    49 schema:isAccessibleForFree false
    50 schema:isPartOf N59042be129c5448684551bf76a1f7dbd
    51 Nb306e1cd932f46d0a41bbf6a8d5aaea1
    52 sg:journal.1037429
    53 schema:name Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips
    54 schema:pagination 371-375
    55 schema:productId N13d42d6916f242e380bbf00a34ad2dc1
    56 N29c8349b602548ccaf51e4c60eeaf9f3
    57 N3f03b8b671404276bd66351ef1e56687
    58 N740b1afed90f49c78e561b9caea22d36
    59 Ncf5ec117c5664320a224f4ff987e9705
    60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103195958
    61 https://doi.org/10.1038/s41565-018-0104-4
    62 schema:sdDatePublished 2019-04-15T08:48
    63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    64 schema:sdPublisher Nbdce9578679542979df9380b467a0ede
    65 schema:url https://www.nature.com/articles/s41565-018-0104-4
    66 sgo:license sg:explorer/license/
    67 sgo:sdDataset articles
    68 rdf:type schema:ScholarlyArticle
    69 N0bca528b37de4ea5b9b6a8597919d651 rdf:first sg:person.0673030370.80
    70 rdf:rest Nbf22a192c5d1457cb552b4190f706def
    71 N117db313beaf44d6af12b63d1262407c rdf:first sg:person.01305206135.83
    72 rdf:rest Nf3192cc286d5405c942235890553eaa3
    73 N13d42d6916f242e380bbf00a34ad2dc1 schema:name pubmed_id
    74 schema:value 29632397
    75 rdf:type schema:PropertyValue
    76 N29c8349b602548ccaf51e4c60eeaf9f3 schema:name doi
    77 schema:value 10.1038/s41565-018-0104-4
    78 rdf:type schema:PropertyValue
    79 N2df3b2a9de8243c7ac324e30021fd651 rdf:first sg:person.07536771640.97
    80 rdf:rest Naed47c14dd8f4279954b6e97fd04f94b
    81 N3f03b8b671404276bd66351ef1e56687 schema:name dimensions_id
    82 schema:value pub.1103195958
    83 rdf:type schema:PropertyValue
    84 N59042be129c5448684551bf76a1f7dbd schema:volumeNumber 13
    85 rdf:type schema:PublicationVolume
    86 N656478ca0bca403996c377bae1876e3a rdf:first sg:person.012630070615.06
    87 rdf:rest N0bca528b37de4ea5b9b6a8597919d651
    88 N7317282bcbb947c6a495512940d49365 rdf:first sg:person.01275120201.94
    89 rdf:rest N2df3b2a9de8243c7ac324e30021fd651
    90 N740b1afed90f49c78e561b9caea22d36 schema:name readcube_id
    91 schema:value a86915a75bc5bf1719d1ec45035aac97b21199d3175d09a08d74b4690915e771
    92 rdf:type schema:PropertyValue
    93 N8744f1ebd1f64ca3b01abfd770e817ee rdf:first sg:person.0624715170.49
    94 rdf:rest Nbe53aae1a3564e72a13b12ec93185dbe
    95 Nadf92719851d45bf99e1ffef72d41517 schema:affiliation https://www.grid.ac/institutes/grid.452332.1
    96 schema:familyName Cnudde
    97 schema:givenName Marvin
    98 rdf:type schema:Person
    99 Naed47c14dd8f4279954b6e97fd04f94b rdf:first sg:person.01332660227.98
    100 rdf:rest Nd944a6794a184e51860d120a4d59402a
    101 Nb306e1cd932f46d0a41bbf6a8d5aaea1 schema:issueNumber 5
    102 rdf:type schema:PublicationIssue
    103 Nbdce9578679542979df9380b467a0ede schema:name Springer Nature - SN SciGraph project
    104 rdf:type schema:Organization
    105 Nbe53aae1a3564e72a13b12ec93185dbe rdf:first sg:person.01211477472.34
    106 rdf:rest N656478ca0bca403996c377bae1876e3a
    107 Nbf22a192c5d1457cb552b4190f706def rdf:first Nadf92719851d45bf99e1ffef72d41517
    108 rdf:rest N7317282bcbb947c6a495512940d49365
    109 Ncf5ec117c5664320a224f4ff987e9705 schema:name nlm_unique_id
    110 schema:value 101283273
    111 rdf:type schema:PropertyValue
    112 Nd944a6794a184e51860d120a4d59402a rdf:first sg:person.0744012231.62
    113 rdf:rest rdf:nil
    114 Nf3192cc286d5405c942235890553eaa3 rdf:first sg:person.01363546572.05
    115 rdf:rest N8744f1ebd1f64ca3b01abfd770e817ee
    116 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Chemical Sciences
    118 rdf:type schema:DefinedTerm
    119 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Physical Chemistry (incl. Structural)
    121 rdf:type schema:DefinedTerm
    122 sg:journal.1037429 schema:issn 1748-3387
    123 1748-3395
    124 schema:name Nature Nanotechnology
    125 rdf:type schema:Periodical
    126 sg:person.01211477472.34 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
    127 schema:familyName Hu
    128 schema:givenName Zhixin
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211477472.34
    130 rdf:type schema:Person
    131 sg:person.012630070615.06 schema:affiliation https://www.grid.ac/institutes/grid.452332.1
    132 schema:familyName Liu
    133 schema:givenName Lacheng
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012630070615.06
    135 rdf:type schema:Person
    136 sg:person.01275120201.94 schema:affiliation https://www.grid.ac/institutes/grid.452332.1
    137 schema:familyName Strassert
    138 schema:givenName Cristian Alejandro
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275120201.94
    140 rdf:type schema:Person
    141 sg:person.01305206135.83 schema:affiliation https://www.grid.ac/institutes/grid.452332.1
    142 schema:familyName Mönig
    143 schema:givenName Harry
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305206135.83
    145 rdf:type schema:Person
    146 sg:person.01332660227.98 schema:affiliation https://www.grid.ac/institutes/grid.5949.1
    147 schema:familyName Rohlfing
    148 schema:givenName Michael
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332660227.98
    150 rdf:type schema:Person
    151 sg:person.01363546572.05 schema:affiliation https://www.grid.ac/institutes/grid.452332.1
    152 schema:familyName Amirjalayer
    153 schema:givenName Saeed
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363546572.05
    155 rdf:type schema:Person
    156 sg:person.0624715170.49 schema:affiliation https://www.grid.ac/institutes/grid.452332.1
    157 schema:familyName Timmer
    158 schema:givenName Alexander
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624715170.49
    160 rdf:type schema:Person
    161 sg:person.0673030370.80 schema:affiliation https://www.grid.ac/institutes/grid.452332.1
    162 schema:familyName Arado
    163 schema:givenName Oscar Díaz
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673030370.80
    165 rdf:type schema:Person
    166 sg:person.0744012231.62 schema:affiliation https://www.grid.ac/institutes/grid.452332.1
    167 schema:familyName Fuchs
    168 schema:givenName Harald
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744012231.62
    170 rdf:type schema:Person
    171 sg:person.07536771640.97 schema:affiliation https://www.grid.ac/institutes/grid.24539.39
    172 schema:familyName Ji
    173 schema:givenName Wei
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07536771640.97
    175 rdf:type schema:Person
    176 sg:pub.10.1038/ncomms4931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019633291
    177 https://doi.org/10.1038/ncomms4931
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/nnano.2012.20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050300004
    180 https://doi.org/10.1038/nnano.2012.20
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/nnano.2016.305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083776848
    183 https://doi.org/10.1038/nnano.2016.305
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1002/anie.201002960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018719253
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1002/jcc.20495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044734228
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1016/j.cclet.2016.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051856175
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1021/acs.jpcc.5b09889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055110228
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1021/acs.nanolett.5b05251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044617501
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1021/acsnano.5b06513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055137529
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1021/j100096a001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055652737
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1021/ja104332t schema:sameAs https://app.dimensions.ai/details/publication/pub.1041358691
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1021/jp050962y schema:sameAs https://app.dimensions.ai/details/publication/pub.1056060388
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1021/nn4045358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056225612
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1039/b508541a schema:sameAs https://app.dimensions.ai/details/publication/pub.1007773272
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1063/1.122948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057687104
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1063/1.4793200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058069969
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1088/0953-8984/14/11/302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013140491
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1088/0953-8984/22/2/022201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021949538
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1103/physrevb.13.5188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060521190
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1103/physrevb.50.17953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573414
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1103/physrevb.54.11169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060581262
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1103/physrevb.59.1758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060591374
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1103/physrevb.76.115421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060622412
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1103/physrevb.83.195131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040559330
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1103/physrevb.86.155422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060640193
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1103/physrevb.90.085421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050209331
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1103/physrevlett.108.086101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060759444
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1103/physrevlett.112.166102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028888807
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1103/physrevlett.113.186102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028689254
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1103/physrevlett.116.096102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008724629
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1103/physrevlett.67.855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803981
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1103/physrevlett.80.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817008
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1103/physrevlett.92.246401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052519808
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1126/science.1176210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015696599
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1126/science.1225621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005798390
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1126/science.1238187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017318659
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1126/science.1242603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013218872
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1126/science.1249502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032231666
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1126/science.254.5030.408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062542853
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1126/science.aai8625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091787173
    258 rdf:type schema:CreativeWork
    259 https://www.grid.ac/institutes/grid.24539.39 schema:alternateName Renmin University of China
    260 schema:name Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Renmin University of China, Beijing, China
    261 rdf:type schema:Organization
    262 https://www.grid.ac/institutes/grid.33763.32 schema:alternateName Tianjin University
    263 schema:name Center for Joint Quantum Studies and Department of Physics, Tianjin University, Tianjin, China
    264 rdf:type schema:Organization
    265 https://www.grid.ac/institutes/grid.452332.1 schema:alternateName CeNTech
    266 schema:name Center for Nanotechnology, Münster, Germany
    267 Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
    268 rdf:type schema:Organization
    269 https://www.grid.ac/institutes/grid.5949.1 schema:alternateName University of Münster
    270 schema:name Institut für Festkörpertheorie, Westfälische Wilhelms-Universität Münster, Münster, Germany
    271 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...