Ballistic Majorana nanowire devices View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-03

AUTHORS

Önder Gül, Hao Zhang, Jouri D. S. Bommer, Michiel W. A. de Moor, Diana Car, Sébastien R. Plissard, Erik P. A. M. Bakkers, Attila Geresdi, Kenji Watanabe, Takashi Taniguchi, Leo P. Kouwenhoven

ABSTRACT

Majorana modes are zero-energy excitations of a topological superconductor that exhibit non-Abelian statistics1-3. Following proposals for their detection in a semiconductor nanowire coupled to an s-wave superconductor4,5, several tunnelling experiments reported characteristic Majorana signatures6-11. Reducing disorder has been a prime challenge for these experiments because disorder can mimic the zero-energy signatures of Majoranas12-16, and renders the topological properties inaccessible17-20. Here, we show characteristic Majorana signatures in InSb nanowire devices exhibiting clear ballistic transport properties. Application of a magnetic field and spatial control of carrier density using local gates generates a zero bias peak that is rigid over a large region in the parameter space of chemical potential, Zeeman energy and tunnel barrier potential. The reduction of disorder allows us to resolve separate regions in the parameter space with and without a zero bias peak, indicating topologically distinct phases. These observations are consistent with the Majorana theory in a ballistic system 21 , and exclude the known alternative explanations that invoke disorder12-16 or a nonuniform chemical potential22,23. More... »

PAGES

192-197

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41565-017-0032-8

DOI

http://dx.doi.org/10.1038/s41565-017-0032-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100351860

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29335565


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands", 
            "Department of Physics, Harvard University, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00fcl", 
        "givenName": "\u00d6nder", 
        "id": "sg:person.01320712515.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320712515.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Hao", 
        "id": "sg:person.07451352667.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07451352667.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bommer", 
        "givenName": "Jouri D. S.", 
        "id": "sg:person.010243663613.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010243663613.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Moor", 
        "givenName": "Michiel W. A.", 
        "id": "sg:person.01006303723.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006303723.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Eindhoven University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6852.9", 
          "name": [
            "Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Car", 
        "givenName": "Diana", 
        "id": "sg:person.01124750402.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124750402.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toulouse", 
          "id": "https://www.grid.ac/institutes/grid.11417.32", 
          "name": [
            "Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands", 
            "CNRS-Laboratoire d\u2019Analyse et d\u2019Architecture des Syst\u00e8mes (LAAS), Universit\u00e9 de Toulouse, Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Plissard", 
        "givenName": "S\u00e9bastien R.", 
        "id": "sg:person.0677026001.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677026001.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Eindhoven University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6852.9", 
          "name": [
            "QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands", 
            "Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bakkers", 
        "givenName": "Erik P. A. M.", 
        "id": "sg:person.016200035764.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016200035764.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geresdi", 
        "givenName": "Attila", 
        "id": "sg:person.01252210067.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252210067.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Kenji", 
        "id": "sg:person.010575643400.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010575643400.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taniguchi", 
        "givenName": "Takashi", 
        "id": "sg:person.0765715521.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands", 
            "Microsoft Station Q Delft, Delft, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kouwenhoven", 
        "givenName": "Leo P.", 
        "id": "sg:person.01360160001.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360160001.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.109.227005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000322651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.227005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000322651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.235434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009395448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.235434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009395448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.245405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010546820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.245405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010546820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010713935", 
          "https://doi.org/10.1038/nphys2479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/18/10/105307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011562057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.077001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014648487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.077001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014648487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature17162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025268295", 
          "https://doi.org/10.1038/nature17162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.096407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026401354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.096407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026401354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.177002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028477691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.177002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028477691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.186803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030879927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.186803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030879927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/14/12/125011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033091534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201400924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034058502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.10267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034267261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.10267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034267261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/1063-7869/44/10s/s29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036504866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.267002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039960067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.267002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039960067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.115429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040799635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.115429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040799635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.180503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043921850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.180503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043921850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.186802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045172769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.186802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045172769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050412318", 
          "https://doi.org/10.1038/nnano.2014.306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051021127", 
          "https://doi.org/10.1038/nnano.2013.267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b00051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055121297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl303758w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056219755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3657135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057993178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/18/3/033013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059137334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.245404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060650929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.245404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060650929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.140505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060652460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.140505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060652460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1222360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062466698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaf3961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062667473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.054502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083717384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.054502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083717384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.7b00540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084124052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms16025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090360161", 
          "https://doi.org/10.1038/ncomms16025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.014510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090756149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.014510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090756149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature23468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091309583", 
          "https://doi.org/10.1038/nature23468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature23468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091309583", 
          "https://doi.org/10.1038/nature23468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.075161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091450917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.075161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091450917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-00315-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091465428", 
          "https://doi.org/10.1038/s41467-017-00315-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.1701476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091506987"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-03", 
    "datePublishedReg": "2018-03-01", 
    "description": "Majorana modes are zero-energy excitations of a topological superconductor that exhibit non-Abelian statistics1-3. Following proposals for their detection in a semiconductor nanowire coupled to an s-wave superconductor4,5, several tunnelling experiments reported characteristic Majorana signatures6-11. Reducing disorder has been a prime challenge for these experiments because disorder can mimic the zero-energy signatures of Majoranas12-16, and renders the topological properties inaccessible17-20. Here, we show characteristic Majorana signatures in InSb nanowire devices exhibiting clear ballistic transport properties. Application of a magnetic field and spatial control of carrier density using local gates generates a zero bias peak that is rigid over a large region in the parameter space of chemical potential, Zeeman energy and tunnel barrier potential. The reduction of disorder allows us to resolve separate regions in the parameter space with and without a zero bias peak, indicating topologically distinct phases. These observations are consistent with the Majorana theory in a ballistic system 21 , and exclude the known alternative explanations that invoke disorder12-16 or a nonuniform chemical potential22,23.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41565-017-0032-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Ballistic Majorana nanowire devices", 
    "pagination": "192-197", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c381d7910bad4f06ff07031beac7308519e4775db2224844a350efafc0c71efb"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29335565"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101283273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41565-017-0032-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100351860"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41565-017-0032-8", 
      "https://app.dimensions.ai/details/publication/pub.1100351860"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41565-017-0032-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41565-017-0032-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41565-017-0032-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41565-017-0032-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41565-017-0032-8'


 

This table displays all metadata directly associated to this object as RDF triples.

270 TRIPLES      21 PREDICATES      65 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41565-017-0032-8 schema:about anzsrc-for:10
2 anzsrc-for:1007
3 schema:author N9c88991a2bb24a18b91bb1182ba344a3
4 schema:citation sg:pub.10.1038/nature17162
5 sg:pub.10.1038/nature23468
6 sg:pub.10.1038/ncomms16025
7 sg:pub.10.1038/nnano.2013.267
8 sg:pub.10.1038/nnano.2014.306
9 sg:pub.10.1038/nphys2479
10 sg:pub.10.1038/s41467-017-00315-y
11 https://doi.org/10.1002/adma.201400924
12 https://doi.org/10.1021/acs.nanolett.6b00051
13 https://doi.org/10.1021/acs.nanolett.7b00540
14 https://doi.org/10.1021/nl303758w
15 https://doi.org/10.1063/1.3657135
16 https://doi.org/10.1070/1063-7869/44/10s/s29
17 https://doi.org/10.1088/0957-4484/18/10/105307
18 https://doi.org/10.1088/1367-2630/14/12/125011
19 https://doi.org/10.1088/1367-2630/18/3/033013
20 https://doi.org/10.1103/physrevb.61.10267
21 https://doi.org/10.1103/physrevb.86.180503
22 https://doi.org/10.1103/physrevb.89.245405
23 https://doi.org/10.1103/physrevb.90.115429
24 https://doi.org/10.1103/physrevb.93.235434
25 https://doi.org/10.1103/physrevb.93.245404
26 https://doi.org/10.1103/physrevb.94.140505
27 https://doi.org/10.1103/physrevb.95.054502
28 https://doi.org/10.1103/physrevb.96.014510
29 https://doi.org/10.1103/physrevb.96.075161
30 https://doi.org/10.1103/physrevlett.100.096407
31 https://doi.org/10.1103/physrevlett.105.077001
32 https://doi.org/10.1103/physrevlett.105.177002
33 https://doi.org/10.1103/physrevlett.109.186802
34 https://doi.org/10.1103/physrevlett.109.227005
35 https://doi.org/10.1103/physrevlett.109.267002
36 https://doi.org/10.1103/physrevlett.110.186803
37 https://doi.org/10.1126/sciadv.1701476
38 https://doi.org/10.1126/science.1222360
39 https://doi.org/10.1126/science.aaf3961
40 schema:datePublished 2018-03
41 schema:datePublishedReg 2018-03-01
42 schema:description Majorana modes are zero-energy excitations of a topological superconductor that exhibit non-Abelian statistics<sup>1-3</sup>. Following proposals for their detection in a semiconductor nanowire coupled to an s-wave superconductor<sup>4,5</sup>, several tunnelling experiments reported characteristic Majorana signatures<sup>6-11</sup>. Reducing disorder has been a prime challenge for these experiments because disorder can mimic the zero-energy signatures of Majoranas<sup>12-16</sup>, and renders the topological properties inaccessible<sup>17-20</sup>. Here, we show characteristic Majorana signatures in InSb nanowire devices exhibiting clear ballistic transport properties. Application of a magnetic field and spatial control of carrier density using local gates generates a zero bias peak that is rigid over a large region in the parameter space of chemical potential, Zeeman energy and tunnel barrier potential. The reduction of disorder allows us to resolve separate regions in the parameter space with and without a zero bias peak, indicating topologically distinct phases. These observations are consistent with the Majorana theory in a ballistic system <sup>21</sup> , and exclude the known alternative explanations that invoke disorder<sup>12-16</sup> or a nonuniform chemical potential<sup>22,23</sup>.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf Nceb9874ea68b457793a998eb9052cb72
47 Nf838fdba8799489388794dbc11595583
48 sg:journal.1037429
49 schema:name Ballistic Majorana nanowire devices
50 schema:pagination 192-197
51 schema:productId N13c1c79e739b49089805f2711463ae1e
52 N2499bf439caa4a96afa3ff0ef155206b
53 N426a8ec278a04979947d70fd4936f622
54 Nc919d9b5f4ae43e19d9a4bc4bea3884e
55 Nccea037fc40f42d1bb04d0607e6a1f8d
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100351860
57 https://doi.org/10.1038/s41565-017-0032-8
58 schema:sdDatePublished 2019-04-10T14:56
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Ndd63cfbbbbb14c7a9a94a941150eba7e
61 schema:url https://www.nature.com/articles/s41565-017-0032-8
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N13c1c79e739b49089805f2711463ae1e schema:name readcube_id
66 schema:value c381d7910bad4f06ff07031beac7308519e4775db2224844a350efafc0c71efb
67 rdf:type schema:PropertyValue
68 N1da4f6962f4f42c7992a3e022530b214 rdf:first sg:person.07451352667.78
69 rdf:rest Na3599afa8127498d82cc78be76b76863
70 N2499bf439caa4a96afa3ff0ef155206b schema:name nlm_unique_id
71 schema:value 101283273
72 rdf:type schema:PropertyValue
73 N2ab24369eced4a30bd01eb82e722959f rdf:first sg:person.01360160001.85
74 rdf:rest rdf:nil
75 N426a8ec278a04979947d70fd4936f622 schema:name doi
76 schema:value 10.1038/s41565-017-0032-8
77 rdf:type schema:PropertyValue
78 N466af94669f74c9da2b096f64605e7aa rdf:first sg:person.010575643400.34
79 rdf:rest Ne8764a92616446e9a40b34cf5571759e
80 N6ff15010b91442a2a16a6e6e8ff7a34f rdf:first sg:person.01006303723.00
81 rdf:rest Ne5afe764af6d4359b154c610c10cbc86
82 N9c88991a2bb24a18b91bb1182ba344a3 rdf:first sg:person.01320712515.38
83 rdf:rest N1da4f6962f4f42c7992a3e022530b214
84 Na3599afa8127498d82cc78be76b76863 rdf:first sg:person.010243663613.46
85 rdf:rest N6ff15010b91442a2a16a6e6e8ff7a34f
86 Nc919d9b5f4ae43e19d9a4bc4bea3884e schema:name pubmed_id
87 schema:value 29335565
88 rdf:type schema:PropertyValue
89 Nc9e4ea14c4614908a7dc64893c1158c6 rdf:first sg:person.01252210067.76
90 rdf:rest N466af94669f74c9da2b096f64605e7aa
91 Nccea037fc40f42d1bb04d0607e6a1f8d schema:name dimensions_id
92 schema:value pub.1100351860
93 rdf:type schema:PropertyValue
94 Nceb9874ea68b457793a998eb9052cb72 schema:issueNumber 3
95 rdf:type schema:PublicationIssue
96 Ndd63cfbbbbb14c7a9a94a941150eba7e schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Ne1a8dd41dc224d2dbdbd5e83f4443365 rdf:first sg:person.0677026001.20
99 rdf:rest Nebc838a0a8bd467690c4f18765b569d2
100 Ne5afe764af6d4359b154c610c10cbc86 rdf:first sg:person.01124750402.98
101 rdf:rest Ne1a8dd41dc224d2dbdbd5e83f4443365
102 Ne8764a92616446e9a40b34cf5571759e rdf:first sg:person.0765715521.02
103 rdf:rest N2ab24369eced4a30bd01eb82e722959f
104 Nebc838a0a8bd467690c4f18765b569d2 rdf:first sg:person.016200035764.22
105 rdf:rest Nc9e4ea14c4614908a7dc64893c1158c6
106 Nf838fdba8799489388794dbc11595583 schema:volumeNumber 13
107 rdf:type schema:PublicationVolume
108 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
109 schema:name Technology
110 rdf:type schema:DefinedTerm
111 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
112 schema:name Nanotechnology
113 rdf:type schema:DefinedTerm
114 sg:journal.1037429 schema:issn 1748-3387
115 1748-3395
116 schema:name Nature Nanotechnology
117 rdf:type schema:Periodical
118 sg:person.01006303723.00 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
119 schema:familyName de Moor
120 schema:givenName Michiel W. A.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006303723.00
122 rdf:type schema:Person
123 sg:person.010243663613.46 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
124 schema:familyName Bommer
125 schema:givenName Jouri D. S.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010243663613.46
127 rdf:type schema:Person
128 sg:person.010575643400.34 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
129 schema:familyName Watanabe
130 schema:givenName Kenji
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010575643400.34
132 rdf:type schema:Person
133 sg:person.01124750402.98 schema:affiliation https://www.grid.ac/institutes/grid.6852.9
134 schema:familyName Car
135 schema:givenName Diana
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124750402.98
137 rdf:type schema:Person
138 sg:person.01252210067.76 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
139 schema:familyName Geresdi
140 schema:givenName Attila
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252210067.76
142 rdf:type schema:Person
143 sg:person.01320712515.38 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
144 schema:familyName Gül
145 schema:givenName Önder
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320712515.38
147 rdf:type schema:Person
148 sg:person.01360160001.85 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
149 schema:familyName Kouwenhoven
150 schema:givenName Leo P.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360160001.85
152 rdf:type schema:Person
153 sg:person.016200035764.22 schema:affiliation https://www.grid.ac/institutes/grid.6852.9
154 schema:familyName Bakkers
155 schema:givenName Erik P. A. M.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016200035764.22
157 rdf:type schema:Person
158 sg:person.0677026001.20 schema:affiliation https://www.grid.ac/institutes/grid.11417.32
159 schema:familyName Plissard
160 schema:givenName Sébastien R.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677026001.20
162 rdf:type schema:Person
163 sg:person.07451352667.78 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
164 schema:familyName Zhang
165 schema:givenName Hao
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07451352667.78
167 rdf:type schema:Person
168 sg:person.0765715521.02 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
169 schema:familyName Taniguchi
170 schema:givenName Takashi
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02
172 rdf:type schema:Person
173 sg:pub.10.1038/nature17162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025268295
174 https://doi.org/10.1038/nature17162
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nature23468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091309583
177 https://doi.org/10.1038/nature23468
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/ncomms16025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090360161
180 https://doi.org/10.1038/ncomms16025
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nnano.2013.267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051021127
183 https://doi.org/10.1038/nnano.2013.267
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nnano.2014.306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050412318
186 https://doi.org/10.1038/nnano.2014.306
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nphys2479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010713935
189 https://doi.org/10.1038/nphys2479
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/s41467-017-00315-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1091465428
192 https://doi.org/10.1038/s41467-017-00315-y
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1002/adma.201400924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034058502
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1021/acs.nanolett.6b00051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055121297
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1021/acs.nanolett.7b00540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084124052
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1021/nl303758w schema:sameAs https://app.dimensions.ai/details/publication/pub.1056219755
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1063/1.3657135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057993178
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1070/1063-7869/44/10s/s29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036504866
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1088/0957-4484/18/10/105307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011562057
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1088/1367-2630/14/12/125011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033091534
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1088/1367-2630/18/3/033013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059137334
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevb.61.10267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034267261
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevb.86.180503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043921850
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physrevb.89.245405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010546820
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevb.90.115429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040799635
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevb.93.235434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009395448
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevb.93.245404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060650929
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevb.94.140505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060652460
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physrevb.95.054502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083717384
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physrevb.96.014510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090756149
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/physrevb.96.075161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091450917
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1103/physrevlett.100.096407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026401354
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1103/physrevlett.105.077001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014648487
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1103/physrevlett.105.177002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028477691
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1103/physrevlett.109.186802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045172769
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1103/physrevlett.109.227005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000322651
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1103/physrevlett.109.267002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039960067
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1103/physrevlett.110.186803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030879927
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1126/sciadv.1701476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091506987
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1126/science.1222360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062466698
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1126/science.aaf3961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062667473
251 rdf:type schema:CreativeWork
252 https://www.grid.ac/institutes/grid.11417.32 schema:alternateName University of Toulouse
253 schema:name CNRS-Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS), Université de Toulouse, Toulouse, France
254 Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
255 rdf:type schema:Organization
256 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
257 schema:name Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Japan
258 rdf:type schema:Organization
259 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
260 schema:name Department of Physics, Harvard University, Cambridge, MA, USA
261 QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
262 rdf:type schema:Organization
263 https://www.grid.ac/institutes/grid.5292.c schema:alternateName Delft University of Technology
264 schema:name Microsoft Station Q Delft, Delft, The Netherlands
265 QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
266 rdf:type schema:Organization
267 https://www.grid.ac/institutes/grid.6852.9 schema:alternateName Eindhoven University of Technology
268 schema:name Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
269 QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
270 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...