Large freshwater phages with the potential to augment aerobic methane oxidation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-08-24

AUTHORS

Lin-Xing Chen, Raphaël Méheust, Alexander Crits-Christoph, Katherine D. McMahon, Tara Colenbrander Nelson, Gregory F. Slater, Lesley A. Warren, Jillian F. Banfield

ABSTRACT

There is growing evidence that phages with unusually large genomes are common across various microbiomes, but little is known about their genetic inventories or potential ecosystem impacts. In the present study, we reconstructed large phage genomes from freshwater lakes known to contain bacteria that oxidize methane. Of manually curated genomes, 22 (18 are complete), ranging from 159 kilobase (kb) to 527 kb in length, were found to encode the pmoC gene, an enzymatically critical subunit of the particulate methane monooxygenase, the predominant methane oxidation catalyst in nature. The phage-associated PmoC sequences show high similarity to (>90%), and affiliate phylogenetically with, those of coexisting bacterial methanotrophs, including members of Methyloparacoccus, Methylocystis and Methylobacter spp. In addition, pmoC-phage abundance patterns correlate with those of the coexisting bacterial methanotrophs, supporting host–phage relationships. Future work is needed to determine whether phage-associated PmoC has similar functions to additional copies of PmoC encoded in bacterial genomes, thus contributing to growth on methane. Transcriptomics data from Lake Rotsee (Switzerland) showed that some phage-associated pmoC genes were highly expressed in situ and, of interest, that the most rapidly growing methanotroph was infected by three pmoC-phages. Thus, augmentation of bacterial methane oxidation by pmoC-phages during infection could modulate the efflux of this potent greenhouse gas into the environment. More... »

PAGES

1504-1515

References to SciGraph publications

  • 2005-01-26. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane in NATURE
  • 2015-03-03. Comparative analysis of metagenomes from three methanogenic hydrocarbon-degrading enrichment cultures with 41 environmental samples in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2016-09-21. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses in NATURE
  • 2017-10-16. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets in NATURE BIOTECHNOLOGY
  • 2018-10-12. Discovery of several novel, widespread, and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2007-11-14. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia in NATURE
  • 2016-04-11. A new view of the tree of life in NATURE MICROBIOLOGY
  • 2010-08-18. Hidden Markov model speed heuristic and iterative HMM search procedure in BMC BIOINFORMATICS
  • 2015-11-09. A century of the phage: past, present and future in NATURE REVIEWS MICROBIOLOGY
  • 2019-06-17. Native top-down mass spectrometry provides insights into the copper centers of membrane-bound methane monooxygenase in NATURE COMMUNICATIONS
  • 2012-03-04. Fast gapped-read alignment with Bowtie 2 in NATURE METHODS
  • 2016-11-07. Measurement of bacterial replication rates in microbial communities in NATURE BIOTECHNOLOGY
  • 2015-06-15. Unusual biology across a group comprising more than 15% of domain Bacteria in NATURE
  • 2019-12-02. Contribution of oxic methane production to surface methane emission in lakes and its global importance in NATURE COMMUNICATIONS
  • 2020-02-12. Clades of huge phages from across Earth’s ecosystems in NATURE
  • 2012-04-10. Differential expression of particulate methane monooxygenase genes in the verrucomicrobial methanotroph ‘Methylacidiphilum kamchatkense’ Kam1 in EXTREMOPHILES
  • 2010-03-08. Prodigal: prokaryotic gene recognition and translation initiation site identification in BMC BIOINFORMATICS
  • 2012-12-20. Methanotrophic bacteria in oilsands tailings ponds of northern Alberta in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2017-02-15. A large-scale evaluation of algorithms to calculate average nucleotide identity in ANTONIE VAN LEEUWENHOEK
  • 2018-07-16. Host-linked soil viral ecology along a permafrost thaw gradient in NATURE MICROBIOLOGY
  • 2005-10-12. Photosynthesis genes in marine viruses yield proteins during host infection in NATURE
  • 2019-09-13. The distinction of CPR bacteria from other bacteria based on protein family content in NATURE COMMUNICATIONS
  • 2007-06-18. CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats in BMC BIOINFORMATICS
  • 2009-08-26. Photosystem I gene cassettes are present in marine virus genomes in NATURE
  • 2011-12-25. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment in NATURE METHODS
  • 2016-01-08. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2003-08. Bacterial photosynthesis genes in a virus in NATURE
  • 2016-08-17. Uncovering Earth’s virome in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41564-020-0779-9

    DOI

    http://dx.doi.org/10.1038/s41564-020-0779-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1130291027

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/32839536


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteriophages", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Viral", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lakes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Methane", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Methylococcaceae", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microbiota", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxidation-Reduction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Lin-Xing", 
            "id": "sg:person.0631040021.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631040021.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "M\u00e9heust", 
            "givenName": "Rapha\u00ebl", 
            "id": "sg:person.01312422302.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312422302.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Crits-Christoph", 
            "givenName": "Alexander", 
            "id": "sg:person.0616304706.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616304706.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departments of Civil and Environmental Engineering, and Bacteriology, University of Wisconsin, Madison, WI, USA", 
              "id": "http://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Departments of Civil and Environmental Engineering, and Bacteriology, University of Wisconsin, Madison, WI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McMahon", 
            "givenName": "Katherine D.", 
            "id": "sg:person.01007375500.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007375500.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.17063.33", 
              "name": [
                "Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nelson", 
            "givenName": "Tara Colenbrander", 
            "id": "sg:person.07441052102.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07441052102.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Geography and Earth Science, McMaster University, Hamilton, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.25073.33", 
              "name": [
                "School of Geography and Earth Science, McMaster University, Hamilton, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Slater", 
            "givenName": "Gregory F.", 
            "id": "sg:person.0704401746.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704401746.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Geography and Earth Science, McMaster University, Hamilton, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.25073.33", 
              "name": [
                "Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada", 
                "School of Geography and Earth Science, McMaster University, Hamilton, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Warren", 
            "givenName": "Lesley A.", 
            "id": "sg:person.0617367515.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617367515.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.184769.5", 
              "name": [
                "Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA", 
                "Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA", 
                "Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA", 
                "Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Banfield", 
            "givenName": "Jillian F.", 
            "id": "sg:person.01350542775.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350542775.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrmicro3564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035162956", 
              "https://doi.org/10.1038/nrmicro3564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-8-209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020623557", 
              "https://doi.org/10.1186/1471-2105-8-209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10482-017-0844-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083827492", 
              "https://doi.org/10.1007/s10482-017-0844-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3988", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092237583", 
              "https://doi.org/10.1038/nbt.3988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2015.241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032868433", 
              "https://doi.org/10.1038/ismej.2015.241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41396-018-0289-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107583446", 
              "https://doi.org/10.1038/s41396-018-0289-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017098509", 
              "https://doi.org/10.1038/nmeth.1818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/424741a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031785841", 
              "https://doi.org/10.1038/424741a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027127512", 
              "https://doi.org/10.1038/nature08284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3704", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020940033", 
              "https://doi.org/10.1038/nbt.3704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature19094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042916120", 
              "https://doi.org/10.1038/nature19094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature19366", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012162698", 
              "https://doi.org/10.1038/nature19366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2012.163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002968935", 
              "https://doi.org/10.1038/ismej.2012.163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-12171-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120997487", 
              "https://doi.org/10.1038/s41467-019-12171-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-13320-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123048562", 
              "https://doi.org/10.1038/s41467-019-13320-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053037263", 
              "https://doi.org/10.1186/1471-2105-11-431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029031769", 
              "https://doi.org/10.1038/nature14486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045219943", 
              "https://doi.org/10.1038/nature03311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042267725", 
              "https://doi.org/10.1038/nature04111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-020-2007-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124830963", 
              "https://doi.org/10.1038/s41586-020-2007-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2015.22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028799813", 
              "https://doi.org/10.1038/ismej.2015.22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010598799", 
              "https://doi.org/10.1038/nmicrobiol.2016.48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026423599", 
              "https://doi.org/10.1186/1471-2105-11-119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41564-018-0190-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105584553", 
              "https://doi.org/10.1038/s41564-018-0190-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00792-012-0439-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038367653", 
              "https://doi.org/10.1007/s00792-012-0439-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-10590-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117288703", 
              "https://doi.org/10.1038/s41467-019-10590-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006541515", 
              "https://doi.org/10.1038/nmeth.1923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044866045", 
              "https://doi.org/10.1038/nature06411"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-08-24", 
        "datePublishedReg": "2020-08-24", 
        "description": "There is growing evidence that phages with unusually large genomes are common across various microbiomes, but little is known about their genetic inventories or potential ecosystem impacts. In the present study, we reconstructed large phage genomes from freshwater lakes known to contain bacteria that oxidize methane. Of manually curated genomes, 22 (18 are complete), ranging from 159\u2009kilobase (kb) to 527\u2009kb in length, were found to encode the pmoC gene, an enzymatically critical subunit of the particulate methane monooxygenase, the predominant methane oxidation catalyst in nature. The phage-associated PmoC sequences show high similarity to (>90%), and affiliate phylogenetically with, those of coexisting bacterial methanotrophs, including members of Methyloparacoccus, Methylocystis and Methylobacter spp. In addition, pmoC-phage abundance patterns correlate with those of the coexisting bacterial methanotrophs, supporting host\u2013phage relationships. Future work is needed to determine whether phage-associated PmoC has similar functions to additional copies of PmoC encoded in bacterial genomes, thus contributing to growth on methane. Transcriptomics data from Lake Rotsee (Switzerland) showed that some phage-associated pmoC genes were highly expressed in situ and, of interest, that the most rapidly growing methanotroph was infected by three pmoC-phages. Thus, augmentation of bacterial methane oxidation by pmoC-phages during infection could modulate the efflux of this potent greenhouse gas into the environment.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41564-020-0779-9", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2995294", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3851172", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3005666", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052984", 
            "issn": [
              "2058-5276"
            ], 
            "name": "Nature Microbiology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "keywords": [
          "bacterial methanotrophs", 
          "largest phage genomes", 
          "particulate methane monooxygenase", 
          "host-phage relationships", 
          "potential ecosystem impacts", 
          "genetic inventory", 
          "freshwater lakes", 
          "bacterial genomes", 
          "Methylobacter spp", 
          "large genomes", 
          "phage genome", 
          "transcriptomic data", 
          "aerobic methane oxidation", 
          "genome", 
          "methane oxidation", 
          "ecosystem impacts", 
          "high similarity", 
          "predominant methane", 
          "Lake Rotsee", 
          "similar functions", 
          "critical subunit", 
          "additional copies", 
          "methane monooxygenase", 
          "methanotrophs", 
          "bacterial methane oxidation", 
          "abundance patterns", 
          "potent greenhouse gas", 
          "genes", 
          "phages", 
          "PMOCs", 
          "kilobase", 
          "Methylocystis", 
          "subunits", 
          "kb", 
          "monooxygenase", 
          "microbiome", 
          "bacteria", 
          "spp", 
          "copies", 
          "sequence", 
          "lakes", 
          "efflux", 
          "Rotsee", 
          "similarity", 
          "members", 
          "growth", 
          "present study", 
          "greenhouse gas", 
          "patterns", 
          "function", 
          "oxidation", 
          "evidence", 
          "environment", 
          "future work", 
          "potential", 
          "addition", 
          "infection", 
          "methane", 
          "length", 
          "situ", 
          "relationship", 
          "study", 
          "data", 
          "nature", 
          "impact", 
          "interest", 
          "work", 
          "augmentation", 
          "Inventory", 
          "affiliates", 
          "gas", 
          "catalyst"
        ], 
        "name": "Large freshwater phages with the potential to augment aerobic methane oxidation", 
        "pagination": "1504-1515", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1130291027"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41564-020-0779-9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "32839536"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41564-020-0779-9", 
          "https://app.dimensions.ai/details/publication/pub.1130291027"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_865.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41564-020-0779-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41564-020-0779-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41564-020-0779-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41564-020-0779-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41564-020-0779-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    354 TRIPLES      22 PREDICATES      135 URIs      98 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41564-020-0779-9 schema:about N5d0a004cc9494f55802cb85c0446920b
    2 N8c8b86b170a5471092a9076f904ca646
    3 Nb3192181ba864b4fbc4b733d9f322d7b
    4 Ne6f71469a9eb4fb8aa1fa27d753d9986
    5 Ne9b6b00eeb424568ae49213b601cddd5
    6 Nf007e679ac3742eda0c2e453b3e50994
    7 Nf42e7aa9ec684fd196295c169a352818
    8 Nf7f678251cc445a8a8eff151b98031ff
    9 anzsrc-for:06
    10 anzsrc-for:0604
    11 anzsrc-for:0605
    12 schema:author N98e7b19bf091465e851f51d4f7e52c4f
    13 schema:citation sg:pub.10.1007/s00792-012-0439-y
    14 sg:pub.10.1007/s10482-017-0844-4
    15 sg:pub.10.1038/424741a
    16 sg:pub.10.1038/ismej.2012.163
    17 sg:pub.10.1038/ismej.2015.22
    18 sg:pub.10.1038/ismej.2015.241
    19 sg:pub.10.1038/nature03311
    20 sg:pub.10.1038/nature04111
    21 sg:pub.10.1038/nature06411
    22 sg:pub.10.1038/nature08284
    23 sg:pub.10.1038/nature14486
    24 sg:pub.10.1038/nature19094
    25 sg:pub.10.1038/nature19366
    26 sg:pub.10.1038/nbt.3704
    27 sg:pub.10.1038/nbt.3988
    28 sg:pub.10.1038/nmeth.1818
    29 sg:pub.10.1038/nmeth.1923
    30 sg:pub.10.1038/nmicrobiol.2016.48
    31 sg:pub.10.1038/nrmicro3564
    32 sg:pub.10.1038/s41396-018-0289-4
    33 sg:pub.10.1038/s41467-019-10590-6
    34 sg:pub.10.1038/s41467-019-12171-z
    35 sg:pub.10.1038/s41467-019-13320-0
    36 sg:pub.10.1038/s41564-018-0190-y
    37 sg:pub.10.1038/s41586-020-2007-4
    38 sg:pub.10.1186/1471-2105-11-119
    39 sg:pub.10.1186/1471-2105-11-431
    40 sg:pub.10.1186/1471-2105-8-209
    41 schema:datePublished 2020-08-24
    42 schema:datePublishedReg 2020-08-24
    43 schema:description There is growing evidence that phages with unusually large genomes are common across various microbiomes, but little is known about their genetic inventories or potential ecosystem impacts. In the present study, we reconstructed large phage genomes from freshwater lakes known to contain bacteria that oxidize methane. Of manually curated genomes, 22 (18 are complete), ranging from 159 kilobase (kb) to 527 kb in length, were found to encode the pmoC gene, an enzymatically critical subunit of the particulate methane monooxygenase, the predominant methane oxidation catalyst in nature. The phage-associated PmoC sequences show high similarity to (>90%), and affiliate phylogenetically with, those of coexisting bacterial methanotrophs, including members of Methyloparacoccus, Methylocystis and Methylobacter spp. In addition, pmoC-phage abundance patterns correlate with those of the coexisting bacterial methanotrophs, supporting host–phage relationships. Future work is needed to determine whether phage-associated PmoC has similar functions to additional copies of PmoC encoded in bacterial genomes, thus contributing to growth on methane. Transcriptomics data from Lake Rotsee (Switzerland) showed that some phage-associated pmoC genes were highly expressed in situ and, of interest, that the most rapidly growing methanotroph was infected by three pmoC-phages. Thus, augmentation of bacterial methane oxidation by pmoC-phages during infection could modulate the efflux of this potent greenhouse gas into the environment.
    44 schema:genre article
    45 schema:inLanguage en
    46 schema:isAccessibleForFree true
    47 schema:isPartOf N791a24d948404c58a3730e8bbca8f895
    48 N810522e7a1b84124a872f69a3a72c4ae
    49 sg:journal.1052984
    50 schema:keywords Inventory
    51 Lake Rotsee
    52 Methylobacter spp
    53 Methylocystis
    54 PMOCs
    55 Rotsee
    56 abundance patterns
    57 addition
    58 additional copies
    59 aerobic methane oxidation
    60 affiliates
    61 augmentation
    62 bacteria
    63 bacterial genomes
    64 bacterial methane oxidation
    65 bacterial methanotrophs
    66 catalyst
    67 copies
    68 critical subunit
    69 data
    70 ecosystem impacts
    71 efflux
    72 environment
    73 evidence
    74 freshwater lakes
    75 function
    76 future work
    77 gas
    78 genes
    79 genetic inventory
    80 genome
    81 greenhouse gas
    82 growth
    83 high similarity
    84 host-phage relationships
    85 impact
    86 infection
    87 interest
    88 kb
    89 kilobase
    90 lakes
    91 large genomes
    92 largest phage genomes
    93 length
    94 members
    95 methane
    96 methane monooxygenase
    97 methane oxidation
    98 methanotrophs
    99 microbiome
    100 monooxygenase
    101 nature
    102 oxidation
    103 particulate methane monooxygenase
    104 patterns
    105 phage genome
    106 phages
    107 potent greenhouse gas
    108 potential
    109 potential ecosystem impacts
    110 predominant methane
    111 present study
    112 relationship
    113 sequence
    114 similar functions
    115 similarity
    116 situ
    117 spp
    118 study
    119 subunits
    120 transcriptomic data
    121 work
    122 schema:name Large freshwater phages with the potential to augment aerobic methane oxidation
    123 schema:pagination 1504-1515
    124 schema:productId N444318286afb4f1c96b91afc290f0aeb
    125 N82c2ed9d70f94069830fe23112f22d80
    126 Nea2b47b184814556ba00510d751162e3
    127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130291027
    128 https://doi.org/10.1038/s41564-020-0779-9
    129 schema:sdDatePublished 2022-05-20T07:38
    130 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    131 schema:sdPublisher N2b645caf92c94c5c95aa448c905b2019
    132 schema:url https://doi.org/10.1038/s41564-020-0779-9
    133 sgo:license sg:explorer/license/
    134 sgo:sdDataset articles
    135 rdf:type schema:ScholarlyArticle
    136 N00b9a6aa29c9426f8b806a1bc488ed68 rdf:first sg:person.0617367515.09
    137 rdf:rest Nbeecb35be772496b888249d321694042
    138 N29ac959d2d4a4007beadd5f5267b8154 rdf:first sg:person.0616304706.07
    139 rdf:rest N4b090ab20c34490d96fb9b27c0853ff8
    140 N2b645caf92c94c5c95aa448c905b2019 schema:name Springer Nature - SN SciGraph project
    141 rdf:type schema:Organization
    142 N444318286afb4f1c96b91afc290f0aeb schema:name pubmed_id
    143 schema:value 32839536
    144 rdf:type schema:PropertyValue
    145 N4b090ab20c34490d96fb9b27c0853ff8 rdf:first sg:person.01007375500.45
    146 rdf:rest Nbd4e7af86d7d4177b168923f566d0a92
    147 N5d0a004cc9494f55802cb85c0446920b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Genome, Viral
    149 rdf:type schema:DefinedTerm
    150 N791a24d948404c58a3730e8bbca8f895 schema:volumeNumber 5
    151 rdf:type schema:PublicationVolume
    152 N810522e7a1b84124a872f69a3a72c4ae schema:issueNumber 12
    153 rdf:type schema:PublicationIssue
    154 N82c2ed9d70f94069830fe23112f22d80 schema:name dimensions_id
    155 schema:value pub.1130291027
    156 rdf:type schema:PropertyValue
    157 N8ac31112482a4c66976b70d0fe0eb64d rdf:first sg:person.01312422302.95
    158 rdf:rest N29ac959d2d4a4007beadd5f5267b8154
    159 N8c8b86b170a5471092a9076f904ca646 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Phylogeny
    161 rdf:type schema:DefinedTerm
    162 N98e7b19bf091465e851f51d4f7e52c4f rdf:first sg:person.0631040021.31
    163 rdf:rest N8ac31112482a4c66976b70d0fe0eb64d
    164 Nac136f15dfc942b8bbcb44c906174a28 rdf:first sg:person.0704401746.99
    165 rdf:rest N00b9a6aa29c9426f8b806a1bc488ed68
    166 Nb3192181ba864b4fbc4b733d9f322d7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Methane
    168 rdf:type schema:DefinedTerm
    169 Nbd4e7af86d7d4177b168923f566d0a92 rdf:first sg:person.07441052102.10
    170 rdf:rest Nac136f15dfc942b8bbcb44c906174a28
    171 Nbeecb35be772496b888249d321694042 rdf:first sg:person.01350542775.47
    172 rdf:rest rdf:nil
    173 Ne6f71469a9eb4fb8aa1fa27d753d9986 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Bacteriophages
    175 rdf:type schema:DefinedTerm
    176 Ne9b6b00eeb424568ae49213b601cddd5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Lakes
    178 rdf:type schema:DefinedTerm
    179 Nea2b47b184814556ba00510d751162e3 schema:name doi
    180 schema:value 10.1038/s41564-020-0779-9
    181 rdf:type schema:PropertyValue
    182 Nf007e679ac3742eda0c2e453b3e50994 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Oxidation-Reduction
    184 rdf:type schema:DefinedTerm
    185 Nf42e7aa9ec684fd196295c169a352818 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Microbiota
    187 rdf:type schema:DefinedTerm
    188 Nf7f678251cc445a8a8eff151b98031ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    189 schema:name Methylococcaceae
    190 rdf:type schema:DefinedTerm
    191 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    192 schema:name Biological Sciences
    193 rdf:type schema:DefinedTerm
    194 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    195 schema:name Genetics
    196 rdf:type schema:DefinedTerm
    197 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    198 schema:name Microbiology
    199 rdf:type schema:DefinedTerm
    200 sg:grant.2995294 http://pending.schema.org/fundedItem sg:pub.10.1038/s41564-020-0779-9
    201 rdf:type schema:MonetaryGrant
    202 sg:grant.3005666 http://pending.schema.org/fundedItem sg:pub.10.1038/s41564-020-0779-9
    203 rdf:type schema:MonetaryGrant
    204 sg:grant.3851172 http://pending.schema.org/fundedItem sg:pub.10.1038/s41564-020-0779-9
    205 rdf:type schema:MonetaryGrant
    206 sg:journal.1052984 schema:issn 2058-5276
    207 schema:name Nature Microbiology
    208 schema:publisher Springer Nature
    209 rdf:type schema:Periodical
    210 sg:person.01007375500.45 schema:affiliation grid-institutes:grid.14003.36
    211 schema:familyName McMahon
    212 schema:givenName Katherine D.
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007375500.45
    214 rdf:type schema:Person
    215 sg:person.01312422302.95 schema:affiliation grid-institutes:grid.47840.3f
    216 schema:familyName Méheust
    217 schema:givenName Raphaël
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312422302.95
    219 rdf:type schema:Person
    220 sg:person.01350542775.47 schema:affiliation grid-institutes:grid.184769.5
    221 schema:familyName Banfield
    222 schema:givenName Jillian F.
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350542775.47
    224 rdf:type schema:Person
    225 sg:person.0616304706.07 schema:affiliation grid-institutes:grid.47840.3f
    226 schema:familyName Crits-Christoph
    227 schema:givenName Alexander
    228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616304706.07
    229 rdf:type schema:Person
    230 sg:person.0617367515.09 schema:affiliation grid-institutes:grid.25073.33
    231 schema:familyName Warren
    232 schema:givenName Lesley A.
    233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617367515.09
    234 rdf:type schema:Person
    235 sg:person.0631040021.31 schema:affiliation grid-institutes:grid.47840.3f
    236 schema:familyName Chen
    237 schema:givenName Lin-Xing
    238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631040021.31
    239 rdf:type schema:Person
    240 sg:person.0704401746.99 schema:affiliation grid-institutes:grid.25073.33
    241 schema:familyName Slater
    242 schema:givenName Gregory F.
    243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704401746.99
    244 rdf:type schema:Person
    245 sg:person.07441052102.10 schema:affiliation grid-institutes:grid.17063.33
    246 schema:familyName Nelson
    247 schema:givenName Tara Colenbrander
    248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07441052102.10
    249 rdf:type schema:Person
    250 sg:pub.10.1007/s00792-012-0439-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1038367653
    251 https://doi.org/10.1007/s00792-012-0439-y
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/s10482-017-0844-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083827492
    254 https://doi.org/10.1007/s10482-017-0844-4
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/424741a schema:sameAs https://app.dimensions.ai/details/publication/pub.1031785841
    257 https://doi.org/10.1038/424741a
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/ismej.2012.163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002968935
    260 https://doi.org/10.1038/ismej.2012.163
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/ismej.2015.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028799813
    263 https://doi.org/10.1038/ismej.2015.22
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/ismej.2015.241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032868433
    266 https://doi.org/10.1038/ismej.2015.241
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/nature03311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045219943
    269 https://doi.org/10.1038/nature03311
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/nature04111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042267725
    272 https://doi.org/10.1038/nature04111
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/nature06411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044866045
    275 https://doi.org/10.1038/nature06411
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/nature08284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027127512
    278 https://doi.org/10.1038/nature08284
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/nature14486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029031769
    281 https://doi.org/10.1038/nature14486
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/nature19094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042916120
    284 https://doi.org/10.1038/nature19094
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/nature19366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012162698
    287 https://doi.org/10.1038/nature19366
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/nbt.3704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020940033
    290 https://doi.org/10.1038/nbt.3704
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/nbt.3988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092237583
    293 https://doi.org/10.1038/nbt.3988
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1038/nmeth.1818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017098509
    296 https://doi.org/10.1038/nmeth.1818
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
    299 https://doi.org/10.1038/nmeth.1923
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1038/nmicrobiol.2016.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010598799
    302 https://doi.org/10.1038/nmicrobiol.2016.48
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1038/nrmicro3564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035162956
    305 https://doi.org/10.1038/nrmicro3564
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1038/s41396-018-0289-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107583446
    308 https://doi.org/10.1038/s41396-018-0289-4
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1038/s41467-019-10590-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117288703
    311 https://doi.org/10.1038/s41467-019-10590-6
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1038/s41467-019-12171-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1120997487
    314 https://doi.org/10.1038/s41467-019-12171-z
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1038/s41467-019-13320-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123048562
    317 https://doi.org/10.1038/s41467-019-13320-0
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1038/s41564-018-0190-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1105584553
    320 https://doi.org/10.1038/s41564-018-0190-y
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1038/s41586-020-2007-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124830963
    323 https://doi.org/10.1038/s41586-020-2007-4
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1186/1471-2105-11-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026423599
    326 https://doi.org/10.1186/1471-2105-11-119
    327 rdf:type schema:CreativeWork
    328 sg:pub.10.1186/1471-2105-11-431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053037263
    329 https://doi.org/10.1186/1471-2105-11-431
    330 rdf:type schema:CreativeWork
    331 sg:pub.10.1186/1471-2105-8-209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020623557
    332 https://doi.org/10.1186/1471-2105-8-209
    333 rdf:type schema:CreativeWork
    334 grid-institutes:grid.14003.36 schema:alternateName Departments of Civil and Environmental Engineering, and Bacteriology, University of Wisconsin, Madison, WI, USA
    335 schema:name Departments of Civil and Environmental Engineering, and Bacteriology, University of Wisconsin, Madison, WI, USA
    336 rdf:type schema:Organization
    337 grid-institutes:grid.17063.33 schema:alternateName Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
    338 schema:name Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
    339 rdf:type schema:Organization
    340 grid-institutes:grid.184769.5 schema:alternateName Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
    341 schema:name Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA
    342 Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
    343 Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
    344 Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
    345 rdf:type schema:Organization
    346 grid-institutes:grid.25073.33 schema:alternateName School of Geography and Earth Science, McMaster University, Hamilton, Ontario, Canada
    347 schema:name Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
    348 School of Geography and Earth Science, McMaster University, Hamilton, Ontario, Canada
    349 rdf:type schema:Organization
    350 grid-institutes:grid.47840.3f schema:alternateName Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA
    351 Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
    352 schema:name Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA
    353 Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
    354 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...