Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04-01

AUTHORS

Anja Spang, Courtney W. Stairs, Nina Dombrowski, Laura Eme, Jonathan Lombard, Eva F. Caceres, Chris Greening, Brett J. Baker, Thijs J. G. Ettema

ABSTRACT

The origin of eukaryotes represents an unresolved puzzle in evolutionary biology. Current research suggests that eukaryotes evolved from a merger between a host of archaeal descent and an alphaproteobacterial endosymbiont. The discovery of the Asgard archaea, a proposed archaeal superphylum that includes Lokiarchaeota, Thorarchaeota, Odinarchaeota and Heimdallarchaeota suggested to comprise the closest archaeal relatives of eukaryotes, has helped to elucidate the identity of the putative archaeal host. Whereas Lokiarchaeota are assumed to employ a hydrogen-dependent metabolism, little is known about the metabolic potential of other members of the Asgard superphylum. We infer the central metabolic pathways of Asgard archaea using comparative genomics and phylogenetics to be able to refine current models for the origin of eukaryotes. Our analyses indicate that Thorarchaeota and Lokiarchaeota encode proteins necessary for carbon fixation via the Wood–Ljungdahl pathway and for obtaining reducing equivalents from organic substrates. By contrast, Heimdallarchaeum LC2 and LC3 genomes encode enzymes potentially enabling the oxidation of organic substrates using nitrate or oxygen as electron acceptors. The gene repertoire of Heimdallarchaeum AB125 and Odinarchaeum indicates that these organisms can ferment organic substrates and conserve energy by coupling ferredoxin reoxidation to respiratory proton reduction. Altogether, our genome analyses suggest that Asgard representatives are primarily organoheterotrophs with variable capacity for hydrogen consumption and production. On this basis, we propose the ‘reverse flow model’, an updated symbiogenetic model for the origin of eukaryotes that involves electron or hydrogen flow from an organoheterotrophic archaeal host to a bacterial symbiont. More... »

PAGES

1138-1148

References to SciGraph publications

  • 2016-10-17. Thermophilic archaea activate butane via alkyl-coenzyme M formation in NATURE
  • 2017-08-14. Breath-giving cooperation: critical review of origin of mitochondria hypotheses in BIOLOGY DIRECT
  • 1998-03. The hydrogen hypothesis for the first eukaryote in NATURE
  • 2014-11-17. Fast and sensitive protein alignment using DIAMOND in NATURE METHODS
  • 2016-02-03. Mitochondria in the second act in NATURE
  • 2014-11-10. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria in NATURE REVIEWS MICROBIOLOGY
  • 2013-12-11. An archaeal origin of eukaryotes supports only two primary domains of life in NATURE
  • 2015-09-25. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2017-01-13. A RuBisCO-mediated carbon metabolic pathway in methanogenic archaea in NATURE COMMUNICATIONS
  • 1998-05. Gene transfer to the nucleus and the evolution of chloroplasts in NATURE
  • 2016-01-29. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2015-05-06. Complex archaea that bridge the gap between prokaryotes and eukaryotes in NATURE
  • 2018-04-25. Deep mitochondrial origin outside the sampled alphaproteobacteria in NATURE
  • 1998-11. Symbiosis Between Methanogenic Archaea and δ-Proteobacteria as the Origin of Eukaryotes: The Syntrophic Hypothesis in JOURNAL OF MOLECULAR EVOLUTION
  • 2016-04-11. A new view of the tree of life in NATURE MICROBIOLOGY
  • 2018-01-16. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans in SCIENTIFIC DATA
  • 2015-10-21. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria in NATURE
  • 2017-11-10. Archaea and the origin of eukaryotes in NATURE REVIEWS MICROBIOLOGY
  • 2009-08. Electron transfer in syntrophic communities of anaerobic bacteria and archaea in NATURE REVIEWS MICROBIOLOGY
  • 2016-02-03. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry in NATURE
  • 2018-02-14. Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2016-05-03. RubisCO of a nucleoside pathway known from Archaea is found in diverse uncultivated phyla in bacteria in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2014-02-26. Electron uptake by iron-oxidizing phototrophic bacteria in NATURE COMMUNICATIONS
  • 2017-08-01. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea in NATURE BIOTECHNOLOGY
  • 2013-06-26. Parallel re-modeling of EF-1α function: divergent EF-1α genes co-occur with EFL genes in diverse distantly related eukaryotes in BMC ECOLOGY AND EVOLUTION
  • 2016-09-27. HydDB: A web tool for hydrogenase classification and analysis in SCIENTIFIC REPORTS
  • 2016-04-04. Lokiarchaeon is hydrogen dependent in NATURE MICROBIOLOGY
  • 2017-08-04. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2009-07-29. Acyl-CoA Dehydrogenases: Dynamic History of Protein Family Evolution in JOURNAL OF MOLECULAR EVOLUTION
  • 2010-07-13. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments in BMC ECOLOGY AND EVOLUTION
  • 2017-05-15. Mechanisms of gene flow in archaea in NATURE REVIEWS MICROBIOLOGY
  • 2016-10-24. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system in NATURE COMMUNICATIONS
  • 2015-09-16. Single cell activity reveals direct electron transfer in methanotrophic consortia in NATURE
  • 2017-01-11. Asgard archaea illuminate the origin of eukaryotic cellular complexity in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41564-019-0406-9

    DOI

    http://dx.doi.org/10.1038/s41564-019-0406-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113160889

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30936488


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Archaea", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Archaeal Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Evolution", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Eukaryotic Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Archaeal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heterotrophic Processes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hydrogen", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metabolic Networks and Pathways", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxidation-Reduction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Symbiosis", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, AB Den Burg, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.10914.3d", 
              "name": [
                "Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden", 
                "NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, AB Den Burg, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Spang", 
            "givenName": "Anja", 
            "id": "sg:person.01246526440.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246526440.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden", 
              "id": "http://www.grid.ac/institutes/grid.8993.b", 
              "name": [
                "Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stairs", 
            "givenName": "Courtney W.", 
            "id": "sg:person.01012163104.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012163104.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, TX, USA", 
              "id": "http://www.grid.ac/institutes/grid.89336.37", 
              "name": [
                "NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, AB Den Burg, The Netherlands", 
                "Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dombrowski", 
            "givenName": "Nina", 
            "id": "sg:person.01150230025.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150230025.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden", 
              "id": "http://www.grid.ac/institutes/grid.8993.b", 
              "name": [
                "Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eme", 
            "givenName": "Laura", 
            "id": "sg:person.01101432520.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101432520.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden", 
              "id": "http://www.grid.ac/institutes/grid.8993.b", 
              "name": [
                "Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lombard", 
            "givenName": "Jonathan", 
            "id": "sg:person.015707111537.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707111537.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden", 
              "id": "http://www.grid.ac/institutes/grid.8993.b", 
              "name": [
                "Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Caceres", 
            "givenName": "Eva F.", 
            "id": "sg:person.014365263533.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014365263533.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Biological Sciences, Monash University, Clayton, Victoria, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1002.3", 
              "name": [
                "School of Biological Sciences, Monash University, Clayton, Victoria, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Greening", 
            "givenName": "Chris", 
            "id": "sg:person.012353611210.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012353611210.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, TX, USA", 
              "id": "http://www.grid.ac/institutes/grid.89336.37", 
              "name": [
                "Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Baker", 
            "givenName": "Brett J.", 
            "id": "sg:person.0651757375.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651757375.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden", 
                "Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ettema", 
            "givenName": "Thijs J. G.", 
            "id": "sg:person.0625302042.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625302042.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ncomms13219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035143030", 
              "https://doi.org/10.1038/ncomms13219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sdata.2017.203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100422812", 
              "https://doi.org/10.1038/sdata.2017.203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2015.233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025562769", 
              "https://doi.org/10.1038/ismej.2015.233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001178353", 
              "https://doi.org/10.1038/nrmicro2166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00006408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052203223", 
              "https://doi.org/10.1007/pl00006408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms4391", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018018113", 
              "https://doi.org/10.1038/ncomms4391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046940941", 
              "https://doi.org/10.1038/nature16876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41396-018-0060-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100925149", 
              "https://doi.org/10.1038/s41396-018-0060-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro3365", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022673681", 
              "https://doi.org/10.1038/nrmicro3365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14447", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007474518", 
              "https://doi.org/10.1038/nature14447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2148-10-210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001075316", 
              "https://doi.org/10.1186/1471-2148-10-210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature20152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036617231", 
              "https://doi.org/10.1038/nature20152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040680448", 
              "https://doi.org/10.1038/nmicrobiol.2016.34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature21031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022254641", 
              "https://doi.org/10.1038/nature21031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep34212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021141775", 
              "https://doi.org/10.1038/srep34212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00239-009-9263-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032388075", 
              "https://doi.org/10.1007/s00239-009-9263-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2015.153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002123234", 
              "https://doi.org/10.1038/ismej.2015.153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010598799", 
              "https://doi.org/10.1038/nmicrobiol.2016.48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0059-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103565839", 
              "https://doi.org/10.1038/s41586-018-0059-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature15733", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031297582", 
              "https://doi.org/10.1038/nature15733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/30234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002445123", 
              "https://doi.org/10.1038/30234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091105392", 
              "https://doi.org/10.1038/nbt.3893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature15512", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032454147", 
              "https://doi.org/10.1038/nature15512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023901695", 
              "https://doi.org/10.1038/nmeth.3176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms14007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021799679", 
              "https://doi.org/10.1038/ncomms14007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2017.122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090992456", 
              "https://doi.org/10.1038/ismej.2017.122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16941", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039901700", 
              "https://doi.org/10.1038/nature16941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro.2017.133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092614912", 
              "https://doi.org/10.1038/nrmicro.2017.133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2148-13-131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046519268", 
              "https://doi.org/10.1186/1471-2148-13-131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13062-017-0190-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091206426", 
              "https://doi.org/10.1186/s13062-017-0190-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12779", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020124788", 
              "https://doi.org/10.1038/nature12779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2016.53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044447226", 
              "https://doi.org/10.1038/ismej.2016.53"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro.2017.41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085410953", 
              "https://doi.org/10.1038/nrmicro.2017.41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/32096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043565171", 
              "https://doi.org/10.1038/32096"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04-01", 
        "datePublishedReg": "2019-04-01", 
        "description": "The origin of eukaryotes represents an unresolved puzzle in evolutionary biology. Current research suggests that eukaryotes evolved from a merger between a host of archaeal descent and an alphaproteobacterial endosymbiont. The discovery of the Asgard archaea, a proposed archaeal superphylum that includes Lokiarchaeota, Thorarchaeota, Odinarchaeota and Heimdallarchaeota suggested to comprise the closest archaeal relatives of eukaryotes, has helped to elucidate the identity of the putative archaeal host. Whereas Lokiarchaeota are assumed to employ a hydrogen-dependent metabolism, little is known about the metabolic potential of other members of the Asgard superphylum. We infer the central metabolic pathways of Asgard archaea using comparative genomics and phylogenetics to be able to refine current models for the origin of eukaryotes. Our analyses indicate that Thorarchaeota and Lokiarchaeota encode proteins necessary for carbon fixation via the Wood\u2013Ljungdahl pathway and for obtaining reducing equivalents from organic substrates. By contrast, Heimdallarchaeum LC2 and LC3 genomes encode enzymes potentially enabling the oxidation of organic substrates using nitrate or oxygen as electron acceptors. The gene repertoire of Heimdallarchaeum AB125 and Odinarchaeum indicates that these organisms can ferment organic substrates and conserve energy by coupling ferredoxin reoxidation to respiratory proton reduction. Altogether, our genome analyses suggest that Asgard representatives are primarily organoheterotrophs with variable capacity for hydrogen consumption and production. On this basis, we propose the \u2018reverse flow model\u2019, an updated symbiogenetic model for the origin of eukaryotes that involves electron or hydrogen flow from an organoheterotrophic archaeal host to a bacterial symbiont.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41564-019-0406-9", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7123437", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7074457", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6711774", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7160499", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3793112", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7121721", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3475272", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5494728", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3798044", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052984", 
            "issn": [
              "2058-5276"
            ], 
            "name": "Nature Microbiology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "keywords": [
          "origin of eukaryotes", 
          "Asgard archaea", 
          "archaeal host", 
          "closest archaeal relatives", 
          "Wood-Ljungdahl pathway", 
          "central metabolic pathways", 
          "archaeal superphylum", 
          "Asgard superphylum", 
          "alphaproteobacterial endosymbiont", 
          "comparative genomics", 
          "bacterial symbionts", 
          "eukaryotic cells", 
          "evolutionary biology", 
          "symbiogenetic models", 
          "metabolic potential", 
          "eukaryotes", 
          "gene repertoire", 
          "genome analysis", 
          "carbon fixation", 
          "archaeal metabolism", 
          "Lokiarchaeota", 
          "organic substrates", 
          "metabolic pathways", 
          "Thorarchaeota", 
          "superphylum", 
          "archaea", 
          "host", 
          "electron acceptor", 
          "pathway", 
          "unresolved puzzle", 
          "Heimdallarchaeota", 
          "metabolism", 
          "endosymbionts", 
          "symbionts", 
          "phylogenetics", 
          "genome", 
          "genomics", 
          "organisms", 
          "biology", 
          "protein", 
          "substrate", 
          "origin", 
          "enzyme", 
          "comparative analysis", 
          "current models", 
          "repertoire", 
          "cells", 
          "discovery", 
          "members", 
          "relatives", 
          "variable capacity", 
          "production", 
          "analysis", 
          "LC2", 
          "identity", 
          "representatives", 
          "contrast", 
          "acceptor", 
          "fixation", 
          "nitrate", 
          "basis", 
          "reoxidation", 
          "potential", 
          "current research", 
          "oxidation", 
          "descent", 
          "oxygen", 
          "capacity", 
          "proton reduction", 
          "puzzle", 
          "equivalent", 
          "model", 
          "reduction", 
          "research", 
          "hydrogen consumption", 
          "consumption", 
          "flow", 
          "proposal", 
          "energy", 
          "electrons", 
          "hydrogen flow", 
          "mergers", 
          "flow model"
        ], 
        "name": "Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism", 
        "pagination": "1138-1148", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113160889"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41564-019-0406-9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30936488"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41564-019-0406-9", 
          "https://app.dimensions.ai/details/publication/pub.1113160889"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_799.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41564-019-0406-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41564-019-0406-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41564-019-0406-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41564-019-0406-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41564-019-0406-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    420 TRIPLES      21 PREDICATES      155 URIs      112 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41564-019-0406-9 schema:about N0c25e12acc764040bc49fff97c9108e7
    2 N413cf2cc61ca4bdb89056045e9fbf486
    3 N52500452dc3c4961ac6a371ab7322de4
    4 N535f3d5b026d40adbbfbfcd72f679650
    5 N557281d1a57047e9b3d66c73b9e80320
    6 N5ee60b107eff49189034c3e106e21789
    7 N72e690e7996f48f7a48cf1265b8b9d69
    8 N8c889990ccb74694b0ea91ea9ea51423
    9 Nb07e3da16da24bce8b81d0f6c38359e5
    10 Nbf365bb49347484ebb118c2561cec69b
    11 Nc7132ab087b549fda19190676d13b6b7
    12 Nd5d5b497641f4e20b8a628808b4701cd
    13 anzsrc-for:06
    14 anzsrc-for:0604
    15 anzsrc-for:0605
    16 schema:author N0b310135eea54ec889f12188ea9f2fbf
    17 schema:citation sg:pub.10.1007/pl00006408
    18 sg:pub.10.1007/s00239-009-9263-0
    19 sg:pub.10.1038/30234
    20 sg:pub.10.1038/32096
    21 sg:pub.10.1038/ismej.2015.153
    22 sg:pub.10.1038/ismej.2015.233
    23 sg:pub.10.1038/ismej.2016.53
    24 sg:pub.10.1038/ismej.2017.122
    25 sg:pub.10.1038/nature12779
    26 sg:pub.10.1038/nature14447
    27 sg:pub.10.1038/nature15512
    28 sg:pub.10.1038/nature15733
    29 sg:pub.10.1038/nature16876
    30 sg:pub.10.1038/nature16941
    31 sg:pub.10.1038/nature20152
    32 sg:pub.10.1038/nature21031
    33 sg:pub.10.1038/nbt.3893
    34 sg:pub.10.1038/ncomms13219
    35 sg:pub.10.1038/ncomms14007
    36 sg:pub.10.1038/ncomms4391
    37 sg:pub.10.1038/nmeth.3176
    38 sg:pub.10.1038/nmicrobiol.2016.34
    39 sg:pub.10.1038/nmicrobiol.2016.48
    40 sg:pub.10.1038/nrmicro.2017.133
    41 sg:pub.10.1038/nrmicro.2017.41
    42 sg:pub.10.1038/nrmicro2166
    43 sg:pub.10.1038/nrmicro3365
    44 sg:pub.10.1038/s41396-018-0060-x
    45 sg:pub.10.1038/s41586-018-0059-5
    46 sg:pub.10.1038/sdata.2017.203
    47 sg:pub.10.1038/srep34212
    48 sg:pub.10.1186/1471-2148-10-210
    49 sg:pub.10.1186/1471-2148-13-131
    50 sg:pub.10.1186/s13062-017-0190-5
    51 schema:datePublished 2019-04-01
    52 schema:datePublishedReg 2019-04-01
    53 schema:description The origin of eukaryotes represents an unresolved puzzle in evolutionary biology. Current research suggests that eukaryotes evolved from a merger between a host of archaeal descent and an alphaproteobacterial endosymbiont. The discovery of the Asgard archaea, a proposed archaeal superphylum that includes Lokiarchaeota, Thorarchaeota, Odinarchaeota and Heimdallarchaeota suggested to comprise the closest archaeal relatives of eukaryotes, has helped to elucidate the identity of the putative archaeal host. Whereas Lokiarchaeota are assumed to employ a hydrogen-dependent metabolism, little is known about the metabolic potential of other members of the Asgard superphylum. We infer the central metabolic pathways of Asgard archaea using comparative genomics and phylogenetics to be able to refine current models for the origin of eukaryotes. Our analyses indicate that Thorarchaeota and Lokiarchaeota encode proteins necessary for carbon fixation via the Wood–Ljungdahl pathway and for obtaining reducing equivalents from organic substrates. By contrast, Heimdallarchaeum LC2 and LC3 genomes encode enzymes potentially enabling the oxidation of organic substrates using nitrate or oxygen as electron acceptors. The gene repertoire of Heimdallarchaeum AB125 and Odinarchaeum indicates that these organisms can ferment organic substrates and conserve energy by coupling ferredoxin reoxidation to respiratory proton reduction. Altogether, our genome analyses suggest that Asgard representatives are primarily organoheterotrophs with variable capacity for hydrogen consumption and production. On this basis, we propose the ‘reverse flow model’, an updated symbiogenetic model for the origin of eukaryotes that involves electron or hydrogen flow from an organoheterotrophic archaeal host to a bacterial symbiont.
    54 schema:genre article
    55 schema:isAccessibleForFree true
    56 schema:isPartOf N8698c0b3ab18401582650eb1a4810617
    57 Nf2ca909414e64fa59b606364e55c085f
    58 sg:journal.1052984
    59 schema:keywords Asgard archaea
    60 Asgard superphylum
    61 Heimdallarchaeota
    62 LC2
    63 Lokiarchaeota
    64 Thorarchaeota
    65 Wood-Ljungdahl pathway
    66 acceptor
    67 alphaproteobacterial endosymbiont
    68 analysis
    69 archaea
    70 archaeal host
    71 archaeal metabolism
    72 archaeal superphylum
    73 bacterial symbionts
    74 basis
    75 biology
    76 capacity
    77 carbon fixation
    78 cells
    79 central metabolic pathways
    80 closest archaeal relatives
    81 comparative analysis
    82 comparative genomics
    83 consumption
    84 contrast
    85 current models
    86 current research
    87 descent
    88 discovery
    89 electron acceptor
    90 electrons
    91 endosymbionts
    92 energy
    93 enzyme
    94 equivalent
    95 eukaryotes
    96 eukaryotic cells
    97 evolutionary biology
    98 fixation
    99 flow
    100 flow model
    101 gene repertoire
    102 genome
    103 genome analysis
    104 genomics
    105 host
    106 hydrogen consumption
    107 hydrogen flow
    108 identity
    109 members
    110 mergers
    111 metabolic pathways
    112 metabolic potential
    113 metabolism
    114 model
    115 nitrate
    116 organic substrates
    117 organisms
    118 origin
    119 origin of eukaryotes
    120 oxidation
    121 oxygen
    122 pathway
    123 phylogenetics
    124 potential
    125 production
    126 proposal
    127 protein
    128 proton reduction
    129 puzzle
    130 reduction
    131 relatives
    132 reoxidation
    133 repertoire
    134 representatives
    135 research
    136 substrate
    137 superphylum
    138 symbiogenetic models
    139 symbionts
    140 unresolved puzzle
    141 variable capacity
    142 schema:name Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism
    143 schema:pagination 1138-1148
    144 schema:productId N58faa99615d6485ca2b2247aeeb309a5
    145 Nc4a9ef9f78ea4d85b943424317424182
    146 Nebe597e78431458daf7d20ecd6fdc184
    147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113160889
    148 https://doi.org/10.1038/s41564-019-0406-9
    149 schema:sdDatePublished 2022-12-01T06:39
    150 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    151 schema:sdPublisher N2d216e3e90874d8f8fef7fe8237e2fa1
    152 schema:url https://doi.org/10.1038/s41564-019-0406-9
    153 sgo:license sg:explorer/license/
    154 sgo:sdDataset articles
    155 rdf:type schema:ScholarlyArticle
    156 N01efdd7d8a754814a2061538ff0fce38 rdf:first sg:person.01012163104.00
    157 rdf:rest N307bdacfce2d4407a8ac27dba320993b
    158 N0b310135eea54ec889f12188ea9f2fbf rdf:first sg:person.01246526440.49
    159 rdf:rest N01efdd7d8a754814a2061538ff0fce38
    160 N0c25e12acc764040bc49fff97c9108e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Oxidation-Reduction
    162 rdf:type schema:DefinedTerm
    163 N0f889409c03a4639ab248ecffc66d4e2 rdf:first sg:person.015707111537.03
    164 rdf:rest N415a07bd624a43fdb0ef84b491448ca3
    165 N2d216e3e90874d8f8fef7fe8237e2fa1 schema:name Springer Nature - SN SciGraph project
    166 rdf:type schema:Organization
    167 N307bdacfce2d4407a8ac27dba320993b rdf:first sg:person.01150230025.32
    168 rdf:rest N824f07d592f94001a98707e66243f868
    169 N413cf2cc61ca4bdb89056045e9fbf486 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Models, Biological
    171 rdf:type schema:DefinedTerm
    172 N415a07bd624a43fdb0ef84b491448ca3 rdf:first sg:person.014365263533.89
    173 rdf:rest Ne9f1ed08efe6412995f22429ed566228
    174 N52500452dc3c4961ac6a371ab7322de4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Archaea
    176 rdf:type schema:DefinedTerm
    177 N535f3d5b026d40adbbfbfcd72f679650 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Symbiosis
    179 rdf:type schema:DefinedTerm
    180 N557281d1a57047e9b3d66c73b9e80320 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Hydrogen
    182 rdf:type schema:DefinedTerm
    183 N58faa99615d6485ca2b2247aeeb309a5 schema:name doi
    184 schema:value 10.1038/s41564-019-0406-9
    185 rdf:type schema:PropertyValue
    186 N5ee60b107eff49189034c3e106e21789 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Heterotrophic Processes
    188 rdf:type schema:DefinedTerm
    189 N6a9bf39a3cff4b85bb64308faf3df36b rdf:first sg:person.0625302042.30
    190 rdf:rest rdf:nil
    191 N72e690e7996f48f7a48cf1265b8b9d69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    192 schema:name Archaeal Proteins
    193 rdf:type schema:DefinedTerm
    194 N824f07d592f94001a98707e66243f868 rdf:first sg:person.01101432520.00
    195 rdf:rest N0f889409c03a4639ab248ecffc66d4e2
    196 N8698c0b3ab18401582650eb1a4810617 schema:issueNumber 7
    197 rdf:type schema:PublicationIssue
    198 N8c889990ccb74694b0ea91ea9ea51423 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    199 schema:name Eukaryotic Cells
    200 rdf:type schema:DefinedTerm
    201 Nb07e3da16da24bce8b81d0f6c38359e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    202 schema:name Biological Evolution
    203 rdf:type schema:DefinedTerm
    204 Nbf365bb49347484ebb118c2561cec69b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    205 schema:name Genome, Archaeal
    206 rdf:type schema:DefinedTerm
    207 Nc4a9ef9f78ea4d85b943424317424182 schema:name dimensions_id
    208 schema:value pub.1113160889
    209 rdf:type schema:PropertyValue
    210 Nc7132ab087b549fda19190676d13b6b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    211 schema:name Phylogeny
    212 rdf:type schema:DefinedTerm
    213 Nd5d5b497641f4e20b8a628808b4701cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    214 schema:name Metabolic Networks and Pathways
    215 rdf:type schema:DefinedTerm
    216 Ne9f1ed08efe6412995f22429ed566228 rdf:first sg:person.012353611210.15
    217 rdf:rest Nfb92bc92900745c995c1ea46446e7ad0
    218 Nebe597e78431458daf7d20ecd6fdc184 schema:name pubmed_id
    219 schema:value 30936488
    220 rdf:type schema:PropertyValue
    221 Nf2ca909414e64fa59b606364e55c085f schema:volumeNumber 4
    222 rdf:type schema:PublicationVolume
    223 Nfb92bc92900745c995c1ea46446e7ad0 rdf:first sg:person.0651757375.15
    224 rdf:rest N6a9bf39a3cff4b85bb64308faf3df36b
    225 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    226 schema:name Biological Sciences
    227 rdf:type schema:DefinedTerm
    228 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    229 schema:name Genetics
    230 rdf:type schema:DefinedTerm
    231 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    232 schema:name Microbiology
    233 rdf:type schema:DefinedTerm
    234 sg:grant.3475272 http://pending.schema.org/fundedItem sg:pub.10.1038/s41564-019-0406-9
    235 rdf:type schema:MonetaryGrant
    236 sg:grant.3793112 http://pending.schema.org/fundedItem sg:pub.10.1038/s41564-019-0406-9
    237 rdf:type schema:MonetaryGrant
    238 sg:grant.3798044 http://pending.schema.org/fundedItem sg:pub.10.1038/s41564-019-0406-9
    239 rdf:type schema:MonetaryGrant
    240 sg:grant.5494728 http://pending.schema.org/fundedItem sg:pub.10.1038/s41564-019-0406-9
    241 rdf:type schema:MonetaryGrant
    242 sg:grant.6711774 http://pending.schema.org/fundedItem sg:pub.10.1038/s41564-019-0406-9
    243 rdf:type schema:MonetaryGrant
    244 sg:grant.7074457 http://pending.schema.org/fundedItem sg:pub.10.1038/s41564-019-0406-9
    245 rdf:type schema:MonetaryGrant
    246 sg:grant.7121721 http://pending.schema.org/fundedItem sg:pub.10.1038/s41564-019-0406-9
    247 rdf:type schema:MonetaryGrant
    248 sg:grant.7123437 http://pending.schema.org/fundedItem sg:pub.10.1038/s41564-019-0406-9
    249 rdf:type schema:MonetaryGrant
    250 sg:grant.7160499 http://pending.schema.org/fundedItem sg:pub.10.1038/s41564-019-0406-9
    251 rdf:type schema:MonetaryGrant
    252 sg:journal.1052984 schema:issn 2058-5276
    253 schema:name Nature Microbiology
    254 schema:publisher Springer Nature
    255 rdf:type schema:Periodical
    256 sg:person.01012163104.00 schema:affiliation grid-institutes:grid.8993.b
    257 schema:familyName Stairs
    258 schema:givenName Courtney W.
    259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012163104.00
    260 rdf:type schema:Person
    261 sg:person.01101432520.00 schema:affiliation grid-institutes:grid.8993.b
    262 schema:familyName Eme
    263 schema:givenName Laura
    264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101432520.00
    265 rdf:type schema:Person
    266 sg:person.01150230025.32 schema:affiliation grid-institutes:grid.89336.37
    267 schema:familyName Dombrowski
    268 schema:givenName Nina
    269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150230025.32
    270 rdf:type schema:Person
    271 sg:person.012353611210.15 schema:affiliation grid-institutes:grid.1002.3
    272 schema:familyName Greening
    273 schema:givenName Chris
    274 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012353611210.15
    275 rdf:type schema:Person
    276 sg:person.01246526440.49 schema:affiliation grid-institutes:grid.10914.3d
    277 schema:familyName Spang
    278 schema:givenName Anja
    279 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246526440.49
    280 rdf:type schema:Person
    281 sg:person.014365263533.89 schema:affiliation grid-institutes:grid.8993.b
    282 schema:familyName Caceres
    283 schema:givenName Eva F.
    284 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014365263533.89
    285 rdf:type schema:Person
    286 sg:person.015707111537.03 schema:affiliation grid-institutes:grid.8993.b
    287 schema:familyName Lombard
    288 schema:givenName Jonathan
    289 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707111537.03
    290 rdf:type schema:Person
    291 sg:person.0625302042.30 schema:affiliation grid-institutes:grid.4818.5
    292 schema:familyName Ettema
    293 schema:givenName Thijs J. G.
    294 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625302042.30
    295 rdf:type schema:Person
    296 sg:person.0651757375.15 schema:affiliation grid-institutes:grid.89336.37
    297 schema:familyName Baker
    298 schema:givenName Brett J.
    299 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651757375.15
    300 rdf:type schema:Person
    301 sg:pub.10.1007/pl00006408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052203223
    302 https://doi.org/10.1007/pl00006408
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1007/s00239-009-9263-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032388075
    305 https://doi.org/10.1007/s00239-009-9263-0
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1038/30234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002445123
    308 https://doi.org/10.1038/30234
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1038/32096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043565171
    311 https://doi.org/10.1038/32096
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1038/ismej.2015.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002123234
    314 https://doi.org/10.1038/ismej.2015.153
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1038/ismej.2015.233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025562769
    317 https://doi.org/10.1038/ismej.2015.233
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1038/ismej.2016.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044447226
    320 https://doi.org/10.1038/ismej.2016.53
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1038/ismej.2017.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090992456
    323 https://doi.org/10.1038/ismej.2017.122
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1038/nature12779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020124788
    326 https://doi.org/10.1038/nature12779
    327 rdf:type schema:CreativeWork
    328 sg:pub.10.1038/nature14447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007474518
    329 https://doi.org/10.1038/nature14447
    330 rdf:type schema:CreativeWork
    331 sg:pub.10.1038/nature15512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032454147
    332 https://doi.org/10.1038/nature15512
    333 rdf:type schema:CreativeWork
    334 sg:pub.10.1038/nature15733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031297582
    335 https://doi.org/10.1038/nature15733
    336 rdf:type schema:CreativeWork
    337 sg:pub.10.1038/nature16876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046940941
    338 https://doi.org/10.1038/nature16876
    339 rdf:type schema:CreativeWork
    340 sg:pub.10.1038/nature16941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039901700
    341 https://doi.org/10.1038/nature16941
    342 rdf:type schema:CreativeWork
    343 sg:pub.10.1038/nature20152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036617231
    344 https://doi.org/10.1038/nature20152
    345 rdf:type schema:CreativeWork
    346 sg:pub.10.1038/nature21031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022254641
    347 https://doi.org/10.1038/nature21031
    348 rdf:type schema:CreativeWork
    349 sg:pub.10.1038/nbt.3893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091105392
    350 https://doi.org/10.1038/nbt.3893
    351 rdf:type schema:CreativeWork
    352 sg:pub.10.1038/ncomms13219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035143030
    353 https://doi.org/10.1038/ncomms13219
    354 rdf:type schema:CreativeWork
    355 sg:pub.10.1038/ncomms14007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021799679
    356 https://doi.org/10.1038/ncomms14007
    357 rdf:type schema:CreativeWork
    358 sg:pub.10.1038/ncomms4391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018018113
    359 https://doi.org/10.1038/ncomms4391
    360 rdf:type schema:CreativeWork
    361 sg:pub.10.1038/nmeth.3176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023901695
    362 https://doi.org/10.1038/nmeth.3176
    363 rdf:type schema:CreativeWork
    364 sg:pub.10.1038/nmicrobiol.2016.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040680448
    365 https://doi.org/10.1038/nmicrobiol.2016.34
    366 rdf:type schema:CreativeWork
    367 sg:pub.10.1038/nmicrobiol.2016.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010598799
    368 https://doi.org/10.1038/nmicrobiol.2016.48
    369 rdf:type schema:CreativeWork
    370 sg:pub.10.1038/nrmicro.2017.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092614912
    371 https://doi.org/10.1038/nrmicro.2017.133
    372 rdf:type schema:CreativeWork
    373 sg:pub.10.1038/nrmicro.2017.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085410953
    374 https://doi.org/10.1038/nrmicro.2017.41
    375 rdf:type schema:CreativeWork
    376 sg:pub.10.1038/nrmicro2166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001178353
    377 https://doi.org/10.1038/nrmicro2166
    378 rdf:type schema:CreativeWork
    379 sg:pub.10.1038/nrmicro3365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022673681
    380 https://doi.org/10.1038/nrmicro3365
    381 rdf:type schema:CreativeWork
    382 sg:pub.10.1038/s41396-018-0060-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1100925149
    383 https://doi.org/10.1038/s41396-018-0060-x
    384 rdf:type schema:CreativeWork
    385 sg:pub.10.1038/s41586-018-0059-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103565839
    386 https://doi.org/10.1038/s41586-018-0059-5
    387 rdf:type schema:CreativeWork
    388 sg:pub.10.1038/sdata.2017.203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100422812
    389 https://doi.org/10.1038/sdata.2017.203
    390 rdf:type schema:CreativeWork
    391 sg:pub.10.1038/srep34212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021141775
    392 https://doi.org/10.1038/srep34212
    393 rdf:type schema:CreativeWork
    394 sg:pub.10.1186/1471-2148-10-210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001075316
    395 https://doi.org/10.1186/1471-2148-10-210
    396 rdf:type schema:CreativeWork
    397 sg:pub.10.1186/1471-2148-13-131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046519268
    398 https://doi.org/10.1186/1471-2148-13-131
    399 rdf:type schema:CreativeWork
    400 sg:pub.10.1186/s13062-017-0190-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091206426
    401 https://doi.org/10.1186/s13062-017-0190-5
    402 rdf:type schema:CreativeWork
    403 grid-institutes:grid.1002.3 schema:alternateName School of Biological Sciences, Monash University, Clayton, Victoria, Australia
    404 schema:name School of Biological Sciences, Monash University, Clayton, Victoria, Australia
    405 rdf:type schema:Organization
    406 grid-institutes:grid.10914.3d schema:alternateName NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, AB Den Burg, The Netherlands
    407 schema:name Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
    408 NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, AB Den Burg, The Netherlands
    409 rdf:type schema:Organization
    410 grid-institutes:grid.4818.5 schema:alternateName Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
    411 schema:name Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
    412 Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
    413 rdf:type schema:Organization
    414 grid-institutes:grid.89336.37 schema:alternateName Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, TX, USA
    415 schema:name Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, TX, USA
    416 NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, AB Den Burg, The Netherlands
    417 rdf:type schema:Organization
    418 grid-institutes:grid.8993.b schema:alternateName Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
    419 schema:name Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
    420 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...