Methods for phylogenetic analysis of microbiome data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05-24

AUTHORS

Alex D. Washburne, James T. Morton, Jon Sanders, Daniel McDonald, Qiyun Zhu, Angela M. Oliverio, Rob Knight

ABSTRACT

How does knowing the evolutionary history of microorganisms affect our analysis of microbiological datasets? Depending on the research question, the common ancestry of microorganisms can be a source of confounding variation, or a scaffolding used for inference. For example, when performing regression on traits, common ancestry is a source of dependence among observations, whereas when searching for clades with correlated abundances, common ancestry is the scaffolding for inference. The common ancestry of microorganisms and their genes are organized in trees—phylogenies—which can and should be incorporated into analyses of microbial datasets. While there has been a recent expansion of phylogenetically informed analytical tools, little guidance exists for which method best answers which biological questions. Here, we review methods for phylogeny-aware analyses of microbiome datasets, considerations for choosing the appropriate method and challenges inherent in these methods. We introduce a conceptual organization of these tools, breaking them down into phylogenetic comparative methods, ancestral state reconstruction and analysis of phylogenetic variables and distances, and provide examples in Supplementary Online Tutorials. Careful consideration of the research question and ecological and evolutionary assumptions will help researchers choose a phylogeny and appropriate methods to produce accurate, biologically informative and previously unreported insights. More... »

PAGES

652-661

References to SciGraph publications

  • 2009-08-27. Fast UniFrac: Facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2013-08-25. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences in NATURE BIOTECHNOLOGY
  • 1999-01. Genome phylogeny based on gene content in NATURE GENETICS
  • 2011-10-04. Variation in the mutation rate across mammalian genomes in NATURE REVIEWS GENETICS
  • 2008-07-28. PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships in BMC BIOINFORMATICS
  • 2011-04-25. Variance adjusted weighted UniFrac: a powerful beta diversity measure for comparing communities based on phylogeny in BMC BIOINFORMATICS
  • 2012-06-13. Structure, Function and Diversity of the Healthy Human Microbiome in NATURE
  • 2012-03-28. Molecular phylogenetics: principles and practice in NATURE REVIEWS GENETICS
  • 2000-05. The diversity–stability debate in NATURE
  • 2013-08-14. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes in NATURE COMMUNICATIONS
  • 2016-04-11. A new view of the tree of life in NATURE MICROBIOLOGY
  • 1986. The Statistical Analysis of Compositional Data in NONE
  • 2013-06-22. Beyond classification: gene-family phylogenies from shotgun metagenomic reads enable accurate community analysis in BMC GENOMICS
  • 2008-07-10. Microbial contributions to climate change through carbon cycle feedbacks in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 1999-10. Inferring the historical patterns of biological evolution in NATURE
  • 2005-08-01. Horizontal gene transfer, genome innovation and evolution in NATURE REVIEWS MICROBIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41564-018-0156-0

    DOI

    http://dx.doi.org/10.1038/s41564-018-0156-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104045497

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29795540


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microbiota", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Ribosomal, 16S", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA", 
              "id": "http://www.grid.ac/institutes/grid.41891.35", 
              "name": [
                "Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Washburne", 
            "givenName": "Alex D.", 
            "id": "sg:person.012656123637.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012656123637.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pediatrics, University of California San Diego, La Jolla, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Computer Science, University of California San Diego, La Jolla, CA, USA", 
                "Department of Pediatrics, University of California San Diego, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Morton", 
            "givenName": "James T.", 
            "id": "sg:person.07611006373.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07611006373.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pediatrics, University of California San Diego, La Jolla, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Pediatrics, University of California San Diego, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sanders", 
            "givenName": "Jon", 
            "id": "sg:person.0763606526.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763606526.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pediatrics, University of California San Diego, La Jolla, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Pediatrics, University of California San Diego, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McDonald", 
            "givenName": "Daniel", 
            "id": "sg:person.01324411177.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324411177.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pediatrics, University of California San Diego, La Jolla, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Pediatrics, University of California San Diego, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhu", 
            "givenName": "Qiyun", 
            "id": "sg:person.011522220701.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522220701.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA", 
              "id": "http://www.grid.ac/institutes/grid.464551.7", 
              "name": [
                "Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA", 
                "Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Oliverio", 
            "givenName": "Angela M.", 
            "id": "sg:person.01334655730.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334655730.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pediatrics, University of California San Diego, La Jolla, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Computer Science, University of California San Diego, La Jolla, CA, USA", 
                "Department of Pediatrics, University of California San Diego, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Knight", 
            "givenName": "Rob", 
            "id": "sg:person.016311745377.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1471-2105-12-118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030165226", 
              "https://doi.org/10.1186/1471-2105-12-118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms3304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040093094", 
              "https://doi.org/10.1038/ncomms3304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006740118", 
              "https://doi.org/10.1038/nrg3186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-9-322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007573310", 
              "https://doi.org/10.1186/1471-2105-9-322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033330539", 
              "https://doi.org/10.1038/nrmicro1204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/5052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038696050", 
              "https://doi.org/10.1038/5052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023931311", 
              "https://doi.org/10.1038/nrg3098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2676", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034019934", 
              "https://doi.org/10.1038/nbt.2676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/44766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037821166", 
              "https://doi.org/10.1038/44766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-14-419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004410741", 
              "https://doi.org/10.1186/1471-2164-14-419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35012234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052912863", 
              "https://doi.org/10.1038/35012234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2008.58", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016198956", 
              "https://doi.org/10.1038/ismej.2008.58"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007740093", 
              "https://doi.org/10.1038/nature11234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010598799", 
              "https://doi.org/10.1038/nmicrobiol.2016.48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2009.97", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024882111", 
              "https://doi.org/10.1038/ismej.2009.97"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-4109-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109716595", 
              "https://doi.org/10.1007/978-94-009-4109-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-05-24", 
        "datePublishedReg": "2018-05-24", 
        "description": "How does knowing the evolutionary history of microorganisms affect our analysis of microbiological datasets? Depending on the research question, the common ancestry of microorganisms can be a source of confounding variation, or a scaffolding used for inference. For example, when performing regression on traits, common ancestry is a source of dependence among observations, whereas when searching for clades with correlated abundances, common ancestry is the scaffolding for inference. The common ancestry of microorganisms and their genes are organized in trees\u2014phylogenies\u2014which can and should be incorporated into analyses of microbial datasets. While there has been a recent expansion of phylogenetically informed analytical tools, little guidance exists for which method best answers which biological questions. Here, we review methods for phylogeny-aware analyses of microbiome datasets, considerations for choosing the appropriate method and challenges inherent in these methods. We introduce a conceptual organization of these tools, breaking them down into phylogenetic comparative methods, ancestral state reconstruction and analysis of phylogenetic variables and distances, and provide examples in Supplementary Online Tutorials. Careful consideration of the research question and ecological and evolutionary assumptions will help researchers choose a phylogeny and appropriate methods to produce accurate, biologically informative and previously unreported insights.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41564-018-0156-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052984", 
            "issn": [
              "2058-5276"
            ], 
            "name": "Nature Microbiology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "keywords": [
          "common ancestry", 
          "ancestral state reconstruction", 
          "phylogenetic comparative methods", 
          "evolutionary history", 
          "phylogenetic variables", 
          "phylogenetic analysis", 
          "microbial datasets", 
          "biological questions", 
          "state reconstruction", 
          "evolutionary assumptions", 
          "microbiome datasets", 
          "microbiome data", 
          "correlated abundances", 
          "ancestry", 
          "recent expansion", 
          "microorganisms", 
          "clade", 
          "genes", 
          "unreported insights", 
          "traits", 
          "abundance", 
          "comparative method", 
          "insights", 
          "analysis", 
          "inference", 
          "scaffolding", 
          "analytical tools", 
          "variation", 
          "dataset", 
          "sources of dependence", 
          "tool", 
          "source", 
          "expansion", 
          "appropriate method", 
          "organization", 
          "questions", 
          "example", 
          "observations", 
          "distance", 
          "data", 
          "careful consideration", 
          "history", 
          "method", 
          "reconstruction", 
          "challenges", 
          "researchers", 
          "consideration", 
          "research questions", 
          "online tutorials", 
          "dependence", 
          "variables", 
          "assumption", 
          "tutorial", 
          "conceptual organization", 
          "guidance", 
          "regression", 
          "answers", 
          "little guidance", 
          "best answer", 
          "microbiological datasets", 
          "method best answers", 
          "phylogeny-aware analyses", 
          "Supplementary Online Tutorials"
        ], 
        "name": "Methods for phylogenetic analysis of microbiome data", 
        "pagination": "652-661", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104045497"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41564-018-0156-0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29795540"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41564-018-0156-0", 
          "https://app.dimensions.ai/details/publication/pub.1104045497"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_784.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41564-018-0156-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41564-018-0156-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41564-018-0156-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41564-018-0156-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41564-018-0156-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    262 TRIPLES      22 PREDICATES      111 URIs      87 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41564-018-0156-0 schema:about N0c5203b4d6e84c0aa8b9326d9390d6b0
    2 N0c737f2ab7774572ab13887beaa18b2f
    3 N7fbafa54e1a744298830f8f5650b512f
    4 Na012c9798180474fae7ac0700a23e551
    5 Nd738dc3fc53b4d8299d5499e74503884
    6 Ndd2bfb4e335e441b93dcc03f8aef36bb
    7 anzsrc-for:06
    8 anzsrc-for:0604
    9 schema:author N9e4365f06b4b4540b81ccf89ce65da48
    10 schema:citation sg:pub.10.1007/978-94-009-4109-0
    11 sg:pub.10.1038/35012234
    12 sg:pub.10.1038/44766
    13 sg:pub.10.1038/5052
    14 sg:pub.10.1038/ismej.2008.58
    15 sg:pub.10.1038/ismej.2009.97
    16 sg:pub.10.1038/nature11234
    17 sg:pub.10.1038/nbt.2676
    18 sg:pub.10.1038/ncomms3304
    19 sg:pub.10.1038/nmicrobiol.2016.48
    20 sg:pub.10.1038/nrg3098
    21 sg:pub.10.1038/nrg3186
    22 sg:pub.10.1038/nrmicro1204
    23 sg:pub.10.1186/1471-2105-12-118
    24 sg:pub.10.1186/1471-2105-9-322
    25 sg:pub.10.1186/1471-2164-14-419
    26 schema:datePublished 2018-05-24
    27 schema:datePublishedReg 2018-05-24
    28 schema:description How does knowing the evolutionary history of microorganisms affect our analysis of microbiological datasets? Depending on the research question, the common ancestry of microorganisms can be a source of confounding variation, or a scaffolding used for inference. For example, when performing regression on traits, common ancestry is a source of dependence among observations, whereas when searching for clades with correlated abundances, common ancestry is the scaffolding for inference. The common ancestry of microorganisms and their genes are organized in trees—phylogenies—which can and should be incorporated into analyses of microbial datasets. While there has been a recent expansion of phylogenetically informed analytical tools, little guidance exists for which method best answers which biological questions. Here, we review methods for phylogeny-aware analyses of microbiome datasets, considerations for choosing the appropriate method and challenges inherent in these methods. We introduce a conceptual organization of these tools, breaking them down into phylogenetic comparative methods, ancestral state reconstruction and analysis of phylogenetic variables and distances, and provide examples in Supplementary Online Tutorials. Careful consideration of the research question and ecological and evolutionary assumptions will help researchers choose a phylogeny and appropriate methods to produce accurate, biologically informative and previously unreported insights.
    29 schema:genre article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree false
    32 schema:isPartOf N8103d40f2db64929902718d96a02f14d
    33 Nbb363e29dcd14a0bb827f53b08b38e92
    34 sg:journal.1052984
    35 schema:keywords Supplementary Online Tutorials
    36 abundance
    37 analysis
    38 analytical tools
    39 ancestral state reconstruction
    40 ancestry
    41 answers
    42 appropriate method
    43 assumption
    44 best answer
    45 biological questions
    46 careful consideration
    47 challenges
    48 clade
    49 common ancestry
    50 comparative method
    51 conceptual organization
    52 consideration
    53 correlated abundances
    54 data
    55 dataset
    56 dependence
    57 distance
    58 evolutionary assumptions
    59 evolutionary history
    60 example
    61 expansion
    62 genes
    63 guidance
    64 history
    65 inference
    66 insights
    67 little guidance
    68 method
    69 method best answers
    70 microbial datasets
    71 microbiological datasets
    72 microbiome data
    73 microbiome datasets
    74 microorganisms
    75 observations
    76 online tutorials
    77 organization
    78 phylogenetic analysis
    79 phylogenetic comparative methods
    80 phylogenetic variables
    81 phylogeny-aware analyses
    82 questions
    83 recent expansion
    84 reconstruction
    85 regression
    86 research questions
    87 researchers
    88 scaffolding
    89 source
    90 sources of dependence
    91 state reconstruction
    92 tool
    93 traits
    94 tutorial
    95 unreported insights
    96 variables
    97 variation
    98 schema:name Methods for phylogenetic analysis of microbiome data
    99 schema:pagination 652-661
    100 schema:productId N094b06458a5e499c91a10ea0ea0835ff
    101 N157ab8ccbd1c4c9580a36d5c286a3881
    102 N2a636d1225024f7f91c12d1dad7b80a4
    103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104045497
    104 https://doi.org/10.1038/s41564-018-0156-0
    105 schema:sdDatePublished 2022-01-01T18:51
    106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    107 schema:sdPublisher N32e857a8f1f04246a1a3137d61e993cc
    108 schema:url https://doi.org/10.1038/s41564-018-0156-0
    109 sgo:license sg:explorer/license/
    110 sgo:sdDataset articles
    111 rdf:type schema:ScholarlyArticle
    112 N094b06458a5e499c91a10ea0ea0835ff schema:name dimensions_id
    113 schema:value pub.1104045497
    114 rdf:type schema:PropertyValue
    115 N0c5203b4d6e84c0aa8b9326d9390d6b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Molecular Biology
    117 rdf:type schema:DefinedTerm
    118 N0c737f2ab7774572ab13887beaa18b2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Bacteria
    120 rdf:type schema:DefinedTerm
    121 N157ab8ccbd1c4c9580a36d5c286a3881 schema:name doi
    122 schema:value 10.1038/s41564-018-0156-0
    123 rdf:type schema:PropertyValue
    124 N2a636d1225024f7f91c12d1dad7b80a4 schema:name pubmed_id
    125 schema:value 29795540
    126 rdf:type schema:PropertyValue
    127 N32e857a8f1f04246a1a3137d61e993cc schema:name Springer Nature - SN SciGraph project
    128 rdf:type schema:Organization
    129 N713edeb2a3c8446ab02d88b6947d3d45 rdf:first sg:person.07611006373.15
    130 rdf:rest N806da1a16a054dae950d50056bc0b18b
    131 N7ae9fc8827f04d4e9ab9a00c584571d2 rdf:first sg:person.01334655730.03
    132 rdf:rest Ndb3415a5834f4a6f8f8369f0127faad1
    133 N7fbafa54e1a744298830f8f5650b512f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Microbiota
    135 rdf:type schema:DefinedTerm
    136 N806da1a16a054dae950d50056bc0b18b rdf:first sg:person.0763606526.69
    137 rdf:rest Neb2a186b71ac45c5b6b6443a601093e0
    138 N8103d40f2db64929902718d96a02f14d schema:issueNumber 6
    139 rdf:type schema:PublicationIssue
    140 N9e4365f06b4b4540b81ccf89ce65da48 rdf:first sg:person.012656123637.25
    141 rdf:rest N713edeb2a3c8446ab02d88b6947d3d45
    142 Na012c9798180474fae7ac0700a23e551 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Models, Genetic
    144 rdf:type schema:DefinedTerm
    145 Nb5d7c4507a504bfc8bd91aa048bdfc11 rdf:first sg:person.011522220701.89
    146 rdf:rest N7ae9fc8827f04d4e9ab9a00c584571d2
    147 Nbb363e29dcd14a0bb827f53b08b38e92 schema:volumeNumber 3
    148 rdf:type schema:PublicationVolume
    149 Nd738dc3fc53b4d8299d5499e74503884 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name RNA, Ribosomal, 16S
    151 rdf:type schema:DefinedTerm
    152 Ndb3415a5834f4a6f8f8369f0127faad1 rdf:first sg:person.016311745377.96
    153 rdf:rest rdf:nil
    154 Ndd2bfb4e335e441b93dcc03f8aef36bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Phylogeny
    156 rdf:type schema:DefinedTerm
    157 Neb2a186b71ac45c5b6b6443a601093e0 rdf:first sg:person.01324411177.44
    158 rdf:rest Nb5d7c4507a504bfc8bd91aa048bdfc11
    159 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    160 schema:name Biological Sciences
    161 rdf:type schema:DefinedTerm
    162 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Genetics
    164 rdf:type schema:DefinedTerm
    165 sg:journal.1052984 schema:issn 2058-5276
    166 schema:name Nature Microbiology
    167 schema:publisher Springer Nature
    168 rdf:type schema:Periodical
    169 sg:person.011522220701.89 schema:affiliation grid-institutes:grid.266100.3
    170 schema:familyName Zhu
    171 schema:givenName Qiyun
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522220701.89
    173 rdf:type schema:Person
    174 sg:person.012656123637.25 schema:affiliation grid-institutes:grid.41891.35
    175 schema:familyName Washburne
    176 schema:givenName Alex D.
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012656123637.25
    178 rdf:type schema:Person
    179 sg:person.01324411177.44 schema:affiliation grid-institutes:grid.266100.3
    180 schema:familyName McDonald
    181 schema:givenName Daniel
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324411177.44
    183 rdf:type schema:Person
    184 sg:person.01334655730.03 schema:affiliation grid-institutes:grid.464551.7
    185 schema:familyName Oliverio
    186 schema:givenName Angela M.
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334655730.03
    188 rdf:type schema:Person
    189 sg:person.016311745377.96 schema:affiliation grid-institutes:grid.266100.3
    190 schema:familyName Knight
    191 schema:givenName Rob
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96
    193 rdf:type schema:Person
    194 sg:person.07611006373.15 schema:affiliation grid-institutes:grid.266100.3
    195 schema:familyName Morton
    196 schema:givenName James T.
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07611006373.15
    198 rdf:type schema:Person
    199 sg:person.0763606526.69 schema:affiliation grid-institutes:grid.266100.3
    200 schema:familyName Sanders
    201 schema:givenName Jon
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763606526.69
    203 rdf:type schema:Person
    204 sg:pub.10.1007/978-94-009-4109-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109716595
    205 https://doi.org/10.1007/978-94-009-4109-0
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/35012234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052912863
    208 https://doi.org/10.1038/35012234
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/44766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037821166
    211 https://doi.org/10.1038/44766
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/5052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038696050
    214 https://doi.org/10.1038/5052
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/ismej.2008.58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016198956
    217 https://doi.org/10.1038/ismej.2008.58
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/ismej.2009.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024882111
    220 https://doi.org/10.1038/ismej.2009.97
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/nature11234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007740093
    223 https://doi.org/10.1038/nature11234
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/nbt.2676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034019934
    226 https://doi.org/10.1038/nbt.2676
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/ncomms3304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040093094
    229 https://doi.org/10.1038/ncomms3304
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/nmicrobiol.2016.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010598799
    232 https://doi.org/10.1038/nmicrobiol.2016.48
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/nrg3098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023931311
    235 https://doi.org/10.1038/nrg3098
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/nrg3186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006740118
    238 https://doi.org/10.1038/nrg3186
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/nrmicro1204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033330539
    241 https://doi.org/10.1038/nrmicro1204
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1186/1471-2105-12-118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030165226
    244 https://doi.org/10.1186/1471-2105-12-118
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1186/1471-2105-9-322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007573310
    247 https://doi.org/10.1186/1471-2105-9-322
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1186/1471-2164-14-419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004410741
    250 https://doi.org/10.1186/1471-2164-14-419
    251 rdf:type schema:CreativeWork
    252 grid-institutes:grid.266100.3 schema:alternateName Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
    253 schema:name Department of Computer Science, University of California San Diego, La Jolla, CA, USA
    254 Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
    255 rdf:type schema:Organization
    256 grid-institutes:grid.41891.35 schema:alternateName Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
    257 schema:name Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
    258 rdf:type schema:Organization
    259 grid-institutes:grid.464551.7 schema:alternateName Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
    260 schema:name Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
    261 Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
    262 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...