Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-09-11

AUTHORS

Donovan H. Parks, Christian Rinke, Maria Chuvochina, Pierre-Alain Chaumeil, Ben J. Woodcroft, Paul N. Evans, Philip Hugenholtz, Gene W. Tyson

ABSTRACT

Challenges in cultivating microorganisms have limited the phylogenetic diversity of currently available microbial genomes. This is being addressed by advances in sequencing throughput and computational techniques that allow for the cultivation-independent recovery of genomes from metagenomes. Here, we report the reconstruction of 7,903 bacterial and archaeal genomes from >1,500 public metagenomes. All genomes are estimated to be ≥50% complete and nearly half are ≥90% complete with ≤5% contamination. These genomes increase the phylogenetic diversity of bacterial and archaeal genome trees by >30% and provide the first representatives of 17 bacterial and three archaeal candidate phyla. We also recovered 245 genomes from the Patescibacteria superphylum (also known as the Candidate Phyla Radiation) and find that the relative diversity of this group varies substantially with different protein marker sets. The scale and quality of this data set demonstrate that recovering genomes from metagenomes provides an expedient path forward to exploring microbial dark matter. More... »

PAGES

1533-1542

References to SciGraph publications

  • 2014-07-06. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes in NATURE BIOTECHNOLOGY
  • 2011-12-01. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2016-10-03. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota in NATURE MICROBIOLOGY
  • 2013-12-11. An archaeal origin of eukaryotes supports only two primary domains of life in NATURE
  • 2017-06-12. 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life in NATURE BIOTECHNOLOGY
  • 2009-12. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea in NATURE
  • 2013-01-17. SRAdb: query and use public next-generation sequencing data from within R in BMC BIOINFORMATICS
  • 2015-05-06. Complex archaea that bridge the gap between prokaryotes and eukaryotes in NATURE
  • 2013-05-26. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes in NATURE BIOTECHNOLOGY
  • 2004-02-01. Community structure and metabolism through reconstruction of microbial genomes from the environment in NATURE
  • 2016-07-05. A catalogue of 136 microbial draft genomes from Red Sea metagenomes in SCIENTIFIC DATA
  • 2014-01-17. Sequencing depth and coverage: key considerations in genomic analyses in NATURE REVIEWS GENETICS
  • 2009-12-15. BLAST+: architecture and applications in BMC BIOINFORMATICS
  • 2014-08-14. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences in NATURE REVIEWS MICROBIOLOGY
  • 2015-06-15. Unusual biology across a group comprising more than 15% of domain Bacteria in NATURE
  • 2013-07-14. Insights into the phylogeny and coding potential of microbial dark matter in NATURE
  • 2016-04-11. A new view of the tree of life in NATURE MICROBIOLOGY
  • 2016-01-25. Single-cell genome sequencing: current state of the science in NATURE REVIEWS GENETICS
  • 2010-03-08. Prodigal: prokaryotic gene recognition and translation initiation site identification in BMC BIOINFORMATICS
  • 2017-10-02. Critical Assessment of Metagenome Interpretation—a benchmark of metagenomics software in NATURE METHODS
  • 2017-08-01. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea in NATURE BIOTECHNOLOGY
  • 2016-01-27. Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs in NATURE COMMUNICATIONS
  • 2015-09-07. ConStrains identifies microbial strains in metagenomic datasets in NATURE BIOTECHNOLOGY
  • 2016-10-24. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system in NATURE COMMUNICATIONS
  • 2015-05-17. Genomic Encyclopedia of Bacterial and Archaeal Type Strains, Phase III: the genomes of soil and plant-associated and newly described type strains in ENVIRONMENTAL MICROBIOME
  • 2014-06-15. Genomic Encyclopedia of Type Strains, Phase I: The one thousand microbial genomes (KMG-I) project in ENVIRONMENTAL MICROBIOME
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41564-017-0012-7

    DOI

    http://dx.doi.org/10.1038/s41564-017-0012-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091527308

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28894102


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Archaea", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Archaeal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, St Lucia, Queensland, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1003.2", 
              "name": [
                "Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, St Lucia, Queensland, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Parks", 
            "givenName": "Donovan H.", 
            "id": "sg:person.0772760071.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772760071.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, St Lucia, Queensland, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1003.2", 
              "name": [
                "Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, St Lucia, Queensland, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rinke", 
            "givenName": "Christian", 
            "id": "sg:person.0641145174.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641145174.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, St Lucia, Queensland, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1003.2", 
              "name": [
                "Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, St Lucia, Queensland, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chuvochina", 
            "givenName": "Maria", 
            "id": "sg:person.01053425266.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053425266.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, St Lucia, Queensland, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1003.2", 
              "name": [
                "Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, St Lucia, Queensland, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chaumeil", 
            "givenName": "Pierre-Alain", 
            "id": "sg:person.01330102373.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330102373.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, St Lucia, Queensland, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1003.2", 
              "name": [
                "Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, St Lucia, Queensland, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Woodcroft", 
            "givenName": "Ben J.", 
            "id": "sg:person.01236615213.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236615213.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, St Lucia, Queensland, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1003.2", 
              "name": [
                "Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, St Lucia, Queensland, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Evans", 
            "givenName": "Paul N.", 
            "id": "sg:person.01156471031.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156471031.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, St Lucia, Queensland, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1003.2", 
              "name": [
                "Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, St Lucia, Queensland, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hugenholtz", 
            "givenName": "Philip", 
            "id": "sg:person.01055510700.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055510700.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, St Lucia, Queensland, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1003.2", 
              "name": [
                "Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, St Lucia, Queensland, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tyson", 
            "givenName": "Gene W.", 
            "id": "sg:person.01204312521.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204312521.48"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1471-2105-14-19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003420505", 
              "https://doi.org/10.1186/1471-2105-14-19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.4056/sigs.5068949", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009557303", 
              "https://doi.org/10.4056/sigs.5068949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms10476", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047045451", 
              "https://doi.org/10.1038/ncomms10476"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029031769", 
              "https://doi.org/10.1038/nature14486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12779", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020124788", 
              "https://doi.org/10.1038/nature12779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro3330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018109693", 
              "https://doi.org/10.1038/nrmicro3330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40793-015-0017-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048931948", 
              "https://doi.org/10.1186/s40793-015-0017-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010652073", 
              "https://doi.org/10.1038/nbt.2579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-10-421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050579230", 
              "https://doi.org/10.1186/1471-2105-10-421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019116134", 
              "https://doi.org/10.1038/nbt.3319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3886", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085986003", 
              "https://doi.org/10.1038/nbt.3886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026423599", 
              "https://doi.org/10.1186/1471-2105-11-119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007760660", 
              "https://doi.org/10.1038/nmicrobiol.2016.170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08656", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013886837", 
              "https://doi.org/10.1038/nature08656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019299949", 
              "https://doi.org/10.1038/nature12352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2015.16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008404084", 
              "https://doi.org/10.1038/nrg.2015.16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14447", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007474518", 
              "https://doi.org/10.1038/nature14447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023089166", 
              "https://doi.org/10.1038/nature02340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035143030", 
              "https://doi.org/10.1038/ncomms13219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sdata.2016.50", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014575566", 
              "https://doi.org/10.1038/sdata.2016.50"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.4458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092065319", 
              "https://doi.org/10.1038/nmeth.4458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2011.139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051863807", 
              "https://doi.org/10.1038/ismej.2011.139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010598799", 
              "https://doi.org/10.1038/nmicrobiol.2016.48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2939", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028169813", 
              "https://doi.org/10.1038/nbt.2939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3642", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010746394", 
              "https://doi.org/10.1038/nrg3642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091105392", 
              "https://doi.org/10.1038/nbt.3893"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-09-11", 
        "datePublishedReg": "2017-09-11", 
        "description": "Challenges in cultivating microorganisms have limited the phylogenetic diversity of currently available microbial genomes. This is being addressed by advances in sequencing throughput and computational techniques that allow for the cultivation-independent recovery of genomes from metagenomes. Here, we report the reconstruction of 7,903 bacterial and archaeal genomes from >1,500 public metagenomes. All genomes are estimated to be \u226550% complete and nearly half are \u226590% complete with \u22645% contamination. These genomes increase the phylogenetic diversity of bacterial and archaeal genome trees by >30% and provide the first representatives of 17 bacterial and three archaeal candidate phyla. We also recovered 245 genomes from the Patescibacteria superphylum (also known as the Candidate Phyla Radiation) and find that the relative diversity of this group varies substantially with different protein marker sets. The scale and quality of this data set demonstrate that recovering genomes from metagenomes provides an expedient path forward to exploring microbial dark matter.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41564-017-0012-7", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5128619", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5129370", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6711804", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4319422", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052984", 
            "issn": [
              "2058-5276", 
              "2058-5276"
            ], 
            "name": "Nature Microbiology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "keywords": [
          "phylogenetic diversity", 
          "available microbial genomes", 
          "microbial dark matter", 
          "metagenome-assembled genomes", 
          "tree of life", 
          "genome trees", 
          "candidate phyla", 
          "archaeal genomes", 
          "microbial genomes", 
          "public metagenomes", 
          "relative diversity", 
          "genome", 
          "metagenomes", 
          "marker set", 
          "diversity", 
          "first representative", 
          "superphylum", 
          "trees", 
          "phyla", 
          "microorganisms", 
          "computational techniques", 
          "representatives", 
          "advances", 
          "contamination", 
          "demonstrate", 
          "half", 
          "data", 
          "recovery", 
          "set", 
          "group", 
          "scale", 
          "reconstruction", 
          "matter", 
          "challenges", 
          "life", 
          "quality", 
          "throughput", 
          "technique", 
          "path", 
          "dark matter"
        ], 
        "name": "Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life", 
        "pagination": "1533-1542", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091527308"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41564-017-0012-7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28894102"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41564-017-0012-7", 
          "https://app.dimensions.ai/details/publication/pub.1091527308"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_753.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41564-017-0012-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41564-017-0012-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41564-017-0012-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41564-017-0012-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41564-017-0012-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    294 TRIPLES      22 PREDICATES      100 URIs      66 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41564-017-0012-7 schema:about N1ce5c2c1c85e45cebf34a2b7c8e4224a
    2 N6744aebe83844bcfa37952caf772a0ad
    3 N79aa6e81d7e542c9a4be35be579534f4
    4 Na3da155c9a6942888e8da93fb3e649fc
    5 Nb194ec362ea642bcb0c061086c8c885d
    6 Nbc13f57234234f81bff45e74a61bb7b3
    7 Nc65aae903b574f13b91c91c0d6cc878f
    8 Nc99d445150a24df1bf303b4b2fc6ec94
    9 anzsrc-for:06
    10 anzsrc-for:0605
    11 schema:author N9adabb8c59ea4efe87fd5c9c70d97384
    12 schema:citation sg:pub.10.1038/ismej.2011.139
    13 sg:pub.10.1038/nature02340
    14 sg:pub.10.1038/nature08656
    15 sg:pub.10.1038/nature12352
    16 sg:pub.10.1038/nature12779
    17 sg:pub.10.1038/nature14447
    18 sg:pub.10.1038/nature14486
    19 sg:pub.10.1038/nbt.2579
    20 sg:pub.10.1038/nbt.2939
    21 sg:pub.10.1038/nbt.3319
    22 sg:pub.10.1038/nbt.3886
    23 sg:pub.10.1038/nbt.3893
    24 sg:pub.10.1038/ncomms10476
    25 sg:pub.10.1038/ncomms13219
    26 sg:pub.10.1038/nmeth.4458
    27 sg:pub.10.1038/nmicrobiol.2016.170
    28 sg:pub.10.1038/nmicrobiol.2016.48
    29 sg:pub.10.1038/nrg.2015.16
    30 sg:pub.10.1038/nrg3642
    31 sg:pub.10.1038/nrmicro3330
    32 sg:pub.10.1038/sdata.2016.50
    33 sg:pub.10.1186/1471-2105-10-421
    34 sg:pub.10.1186/1471-2105-11-119
    35 sg:pub.10.1186/1471-2105-14-19
    36 sg:pub.10.1186/s40793-015-0017-x
    37 sg:pub.10.4056/sigs.5068949
    38 schema:datePublished 2017-09-11
    39 schema:datePublishedReg 2017-09-11
    40 schema:description Challenges in cultivating microorganisms have limited the phylogenetic diversity of currently available microbial genomes. This is being addressed by advances in sequencing throughput and computational techniques that allow for the cultivation-independent recovery of genomes from metagenomes. Here, we report the reconstruction of 7,903 bacterial and archaeal genomes from >1,500 public metagenomes. All genomes are estimated to be ≥50% complete and nearly half are ≥90% complete with ≤5% contamination. These genomes increase the phylogenetic diversity of bacterial and archaeal genome trees by >30% and provide the first representatives of 17 bacterial and three archaeal candidate phyla. We also recovered 245 genomes from the Patescibacteria superphylum (also known as the Candidate Phyla Radiation) and find that the relative diversity of this group varies substantially with different protein marker sets. The scale and quality of this data set demonstrate that recovering genomes from metagenomes provides an expedient path forward to exploring microbial dark matter.
    41 schema:genre article
    42 schema:inLanguage en
    43 schema:isAccessibleForFree true
    44 schema:isPartOf N58a6e155fe054e618b759a302a86a3fc
    45 Na7397c7d5da7436cb75eafaa831884e5
    46 sg:journal.1052984
    47 schema:keywords advances
    48 archaeal genomes
    49 available microbial genomes
    50 candidate phyla
    51 challenges
    52 computational techniques
    53 contamination
    54 dark matter
    55 data
    56 demonstrate
    57 diversity
    58 first representative
    59 genome
    60 genome trees
    61 group
    62 half
    63 life
    64 marker set
    65 matter
    66 metagenome-assembled genomes
    67 metagenomes
    68 microbial dark matter
    69 microbial genomes
    70 microorganisms
    71 path
    72 phyla
    73 phylogenetic diversity
    74 public metagenomes
    75 quality
    76 reconstruction
    77 recovery
    78 relative diversity
    79 representatives
    80 scale
    81 set
    82 superphylum
    83 technique
    84 throughput
    85 tree of life
    86 trees
    87 schema:name Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life
    88 schema:pagination 1533-1542
    89 schema:productId N407d900faa7f4005b2110bf5ecdc7d13
    90 N976b31e203ca44b1aba043908edcbd01
    91 N9d8183a0b3c744279007f5bfa8522d9c
    92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091527308
    93 https://doi.org/10.1038/s41564-017-0012-7
    94 schema:sdDatePublished 2022-06-01T22:18
    95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    96 schema:sdPublisher N6acc3b001b744e10b5e1db5386a7e331
    97 schema:url https://doi.org/10.1038/s41564-017-0012-7
    98 sgo:license sg:explorer/license/
    99 sgo:sdDataset articles
    100 rdf:type schema:ScholarlyArticle
    101 N197af4221c714bcb9b0a8bc5337c671e rdf:first sg:person.01053425266.52
    102 rdf:rest Nbc15b576b45a46dfa40f07067637f5b9
    103 N1ce5c2c1c85e45cebf34a2b7c8e4224a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Genome, Archaeal
    105 rdf:type schema:DefinedTerm
    106 N303adfe49ca24e4184186f5e8295cbde rdf:first sg:person.01204312521.48
    107 rdf:rest rdf:nil
    108 N407d900faa7f4005b2110bf5ecdc7d13 schema:name doi
    109 schema:value 10.1038/s41564-017-0012-7
    110 rdf:type schema:PropertyValue
    111 N44ef41fffcfc46beb262e7181abf4376 rdf:first sg:person.0641145174.28
    112 rdf:rest N197af4221c714bcb9b0a8bc5337c671e
    113 N58a6e155fe054e618b759a302a86a3fc schema:issueNumber 11
    114 rdf:type schema:PublicationIssue
    115 N6744aebe83844bcfa37952caf772a0ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Metagenome
    117 rdf:type schema:DefinedTerm
    118 N6acc3b001b744e10b5e1db5386a7e331 schema:name Springer Nature - SN SciGraph project
    119 rdf:type schema:Organization
    120 N79aa6e81d7e542c9a4be35be579534f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Genome, Bacterial
    122 rdf:type schema:DefinedTerm
    123 N83fb96ab769b426292ec1d9632b10db1 rdf:first sg:person.01156471031.87
    124 rdf:rest N8bf7effa1e7f40968aedae3ab04bfad0
    125 N8bf7effa1e7f40968aedae3ab04bfad0 rdf:first sg:person.01055510700.73
    126 rdf:rest N303adfe49ca24e4184186f5e8295cbde
    127 N8c35e59ac7aa4f0eb571753d23029e1f rdf:first sg:person.01236615213.51
    128 rdf:rest N83fb96ab769b426292ec1d9632b10db1
    129 N976b31e203ca44b1aba043908edcbd01 schema:name pubmed_id
    130 schema:value 28894102
    131 rdf:type schema:PropertyValue
    132 N9adabb8c59ea4efe87fd5c9c70d97384 rdf:first sg:person.0772760071.00
    133 rdf:rest N44ef41fffcfc46beb262e7181abf4376
    134 N9d8183a0b3c744279007f5bfa8522d9c schema:name dimensions_id
    135 schema:value pub.1091527308
    136 rdf:type schema:PropertyValue
    137 Na3da155c9a6942888e8da93fb3e649fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Bacteria
    139 rdf:type schema:DefinedTerm
    140 Na7397c7d5da7436cb75eafaa831884e5 schema:volumeNumber 2
    141 rdf:type schema:PublicationVolume
    142 Nb194ec362ea642bcb0c061086c8c885d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Archaea
    144 rdf:type schema:DefinedTerm
    145 Nbc13f57234234f81bff45e74a61bb7b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Metagenomics
    147 rdf:type schema:DefinedTerm
    148 Nbc15b576b45a46dfa40f07067637f5b9 rdf:first sg:person.01330102373.10
    149 rdf:rest N8c35e59ac7aa4f0eb571753d23029e1f
    150 Nc65aae903b574f13b91c91c0d6cc878f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Phylogeny
    152 rdf:type schema:DefinedTerm
    153 Nc99d445150a24df1bf303b4b2fc6ec94 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Sequence Analysis, DNA
    155 rdf:type schema:DefinedTerm
    156 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    157 schema:name Biological Sciences
    158 rdf:type schema:DefinedTerm
    159 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    160 schema:name Microbiology
    161 rdf:type schema:DefinedTerm
    162 sg:grant.4319422 http://pending.schema.org/fundedItem sg:pub.10.1038/s41564-017-0012-7
    163 rdf:type schema:MonetaryGrant
    164 sg:grant.5128619 http://pending.schema.org/fundedItem sg:pub.10.1038/s41564-017-0012-7
    165 rdf:type schema:MonetaryGrant
    166 sg:grant.5129370 http://pending.schema.org/fundedItem sg:pub.10.1038/s41564-017-0012-7
    167 rdf:type schema:MonetaryGrant
    168 sg:grant.6711804 http://pending.schema.org/fundedItem sg:pub.10.1038/s41564-017-0012-7
    169 rdf:type schema:MonetaryGrant
    170 sg:journal.1052984 schema:issn 2058-5276
    171 schema:name Nature Microbiology
    172 schema:publisher Springer Nature
    173 rdf:type schema:Periodical
    174 sg:person.01053425266.52 schema:affiliation grid-institutes:grid.1003.2
    175 schema:familyName Chuvochina
    176 schema:givenName Maria
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053425266.52
    178 rdf:type schema:Person
    179 sg:person.01055510700.73 schema:affiliation grid-institutes:grid.1003.2
    180 schema:familyName Hugenholtz
    181 schema:givenName Philip
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055510700.73
    183 rdf:type schema:Person
    184 sg:person.01156471031.87 schema:affiliation grid-institutes:grid.1003.2
    185 schema:familyName Evans
    186 schema:givenName Paul N.
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156471031.87
    188 rdf:type schema:Person
    189 sg:person.01204312521.48 schema:affiliation grid-institutes:grid.1003.2
    190 schema:familyName Tyson
    191 schema:givenName Gene W.
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204312521.48
    193 rdf:type schema:Person
    194 sg:person.01236615213.51 schema:affiliation grid-institutes:grid.1003.2
    195 schema:familyName Woodcroft
    196 schema:givenName Ben J.
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236615213.51
    198 rdf:type schema:Person
    199 sg:person.01330102373.10 schema:affiliation grid-institutes:grid.1003.2
    200 schema:familyName Chaumeil
    201 schema:givenName Pierre-Alain
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330102373.10
    203 rdf:type schema:Person
    204 sg:person.0641145174.28 schema:affiliation grid-institutes:grid.1003.2
    205 schema:familyName Rinke
    206 schema:givenName Christian
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641145174.28
    208 rdf:type schema:Person
    209 sg:person.0772760071.00 schema:affiliation grid-institutes:grid.1003.2
    210 schema:familyName Parks
    211 schema:givenName Donovan H.
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772760071.00
    213 rdf:type schema:Person
    214 sg:pub.10.1038/ismej.2011.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051863807
    215 https://doi.org/10.1038/ismej.2011.139
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nature02340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023089166
    218 https://doi.org/10.1038/nature02340
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/nature08656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013886837
    221 https://doi.org/10.1038/nature08656
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/nature12352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019299949
    224 https://doi.org/10.1038/nature12352
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/nature12779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020124788
    227 https://doi.org/10.1038/nature12779
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/nature14447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007474518
    230 https://doi.org/10.1038/nature14447
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/nature14486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029031769
    233 https://doi.org/10.1038/nature14486
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/nbt.2579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010652073
    236 https://doi.org/10.1038/nbt.2579
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/nbt.2939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028169813
    239 https://doi.org/10.1038/nbt.2939
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/nbt.3319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019116134
    242 https://doi.org/10.1038/nbt.3319
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/nbt.3886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085986003
    245 https://doi.org/10.1038/nbt.3886
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/nbt.3893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091105392
    248 https://doi.org/10.1038/nbt.3893
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/ncomms10476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047045451
    251 https://doi.org/10.1038/ncomms10476
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/ncomms13219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035143030
    254 https://doi.org/10.1038/ncomms13219
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nmeth.4458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092065319
    257 https://doi.org/10.1038/nmeth.4458
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/nmicrobiol.2016.170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007760660
    260 https://doi.org/10.1038/nmicrobiol.2016.170
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/nmicrobiol.2016.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010598799
    263 https://doi.org/10.1038/nmicrobiol.2016.48
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/nrg.2015.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008404084
    266 https://doi.org/10.1038/nrg.2015.16
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/nrg3642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010746394
    269 https://doi.org/10.1038/nrg3642
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/nrmicro3330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018109693
    272 https://doi.org/10.1038/nrmicro3330
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/sdata.2016.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014575566
    275 https://doi.org/10.1038/sdata.2016.50
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1186/1471-2105-10-421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050579230
    278 https://doi.org/10.1186/1471-2105-10-421
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1186/1471-2105-11-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026423599
    281 https://doi.org/10.1186/1471-2105-11-119
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1186/1471-2105-14-19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003420505
    284 https://doi.org/10.1186/1471-2105-14-19
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1186/s40793-015-0017-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048931948
    287 https://doi.org/10.1186/s40793-015-0017-x
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.4056/sigs.5068949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009557303
    290 https://doi.org/10.4056/sigs.5068949
    291 rdf:type schema:CreativeWork
    292 grid-institutes:grid.1003.2 schema:alternateName Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, St Lucia, Queensland, Australia
    293 schema:name Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, St Lucia, Queensland, Australia
    294 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...