Universal scaling law of glass rheology View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-01-31

AUTHORS

Shuangxi Song, Fan Zhu, Mingwei Chen

ABSTRACT

The similarity in atomic/molecular structure between liquids and glasses has stimulated a long-standing hypothesis that the nature of glasses may be more fluid-like, rather than the apparent solid. In principle, the nature of glasses can be characterized by the dynamic response of their rheology in a wide rate range, but this has not been realized experimentally, to the best of our knowledge. Here we report the dynamic response of shear stress to the shear strain rate of metallic glasses over a timescale of nine orders of magnitude, equivalent to hundreds of years, by broadband stress relaxation experiments. The dynamic response of the metallic glasses, together with other ‘glasses’, follows a universal scaling law within the framework of fluid dynamics. The universal scaling law provides comprehensive validation of the conjecture on the jamming (dynamic) phase diagram by which the dynamic behaviours of a wide variety of ‘glasses’ can be unified under one rubric parameterized by the thermodynamic variables of temperature, volume and stress in the trajectory space. More... »

PAGES

404-409

References to SciGraph publications

  • 2007-08. Rheology and Ultrasonic Properties of Metallic Glass-Forming Liquids: A Potential Energy Landscape Perspective in MRS BULLETIN
  • 2009-03. Investigation of thermally activated deformation in amorphous PMMA and Zr-Cu-Al bulk metallic glasses with broadband nanoindentation creep in JOURNAL OF MATERIALS RESEARCH
  • 2011-12-14. Jamming by shear in NATURE
  • 2019-05-01. High-temperature bulk metallic glasses developed by combinatorial methods in NATURE
  • 1995-08. The relationship between indentation and uniaxial creep in amorphous selenium in JOURNAL OF MATERIALS RESEARCH
  • 2015-10-26. Mechanics of fire ant aggregations in NATURE MATERIALS
  • 2011. Relaxation and Diffusion in Complex Systems in NONE
  • 2008-06. Fracture behavior of Zr55Cu30Al10Ni5 bulk metallic glass under quasi-static and dynamic compression in JOURNAL OF MATERIALS RESEARCH
  • 1998-11. Jamming is not just cool any more in NATURE
  • 2001-06. Jamming phase diagram for attractive particles in NATURE
  • 2014-12-15. Evolution of hidden localized flow during glass-to-liquid transition in metallic glass in NATURE COMMUNICATIONS
  • 1988-10. Mechanical deflection of cantilever microbeams: A new technique for testing the mechanical properties of thin films in JOURNAL OF MATERIALS RESEARCH
  • 2004-09-01. Electron and phonon relaxation in metal films perturbed by a femtosecond laser pulse in APPLIED PHYSICS A
  • 1992-06. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments in JOURNAL OF MATERIALS RESEARCH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41563-021-01185-y

    DOI

    http://dx.doi.org/10.1038/s41563-021-01185-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1145120722

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/35102307


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/18", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Law and Legal Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Law", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Rheology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stress, Mechanical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Temperature", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Thermodynamics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China", 
              "id": "http://www.grid.ac/institutes/grid.16821.3c", 
              "name": [
                "State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Shuangxi", 
            "id": "sg:person.010046770425.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010046770425.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science, Fudan University, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.8547.e", 
              "name": [
                "State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China", 
                "WPI Advanced Institute for Materials Research, Tohoku University, Sendai, Japan", 
                "Department of Materials Science, Fudan University, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhu", 
            "givenName": "Fan", 
            "id": "sg:person.01002677477.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002677477.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "WPI Advanced Institute for Materials Research, Tohoku University, Sendai, Japan", 
                "Department of Materials Science and Engineering, Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Mingwei", 
            "id": "sg:person.01111213505.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111213505.34"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4419-7649-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026062638", 
              "https://doi.org/10.1007/978-1-4419-7649-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/jmr.1992.1564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043643805", 
              "https://doi.org/10.1557/jmr.1992.1564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35081021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022509262", 
              "https://doi.org/10.1038/35081021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014198847", 
              "https://doi.org/10.1038/nmat4450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10667", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028491278", 
              "https://doi.org/10.1038/nature10667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-019-1145-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113858723", 
              "https://doi.org/10.1038/s41586-019-1145-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/jmr.1988.0931", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022182547", 
              "https://doi.org/10.1557/jmr.1988.0931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/mrs2007.127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067969209", 
              "https://doi.org/10.1557/mrs2007.127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/jmr.1995.2024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053642044", 
              "https://doi.org/10.1557/jmr.1995.2024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6823", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017749130", 
              "https://doi.org/10.1038/ncomms6823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/jmr.2009.0145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010270075", 
              "https://doi.org/10.1557/jmr.2009.0145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00339-004-2625-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012578011", 
              "https://doi.org/10.1007/s00339-004-2625-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/jmr.2008.0217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002963338", 
              "https://doi.org/10.1557/jmr.2008.0217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/23819", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048809826", 
              "https://doi.org/10.1038/23819"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-01-31", 
        "datePublishedReg": "2022-01-31", 
        "description": "The similarity in atomic/molecular structure between liquids and glasses has stimulated a long-standing hypothesis that the nature of glasses may be more fluid-like, rather than the apparent solid. In principle, the nature of glasses can be characterized by the dynamic response of their rheology in a wide rate range, but this has not been realized experimentally, to the best of our knowledge. Here we report the dynamic response of shear stress to the shear strain rate of metallic glasses over a timescale of nine orders of magnitude, equivalent to hundreds of years, by broadband stress relaxation experiments. The dynamic response of the metallic glasses, together with other \u2018glasses\u2019, follows a universal scaling law within the framework of fluid dynamics. The universal scaling law provides comprehensive validation of the conjecture on the jamming (dynamic) phase diagram by which the dynamic behaviours of a wide variety of \u2018glasses\u2019 can be unified under one rubric parameterized by the thermodynamic variables of temperature, volume and stress in the trajectory space.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41563-021-01185-y", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.9415460", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7703555", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1031408", 
            "issn": [
              "1476-1122", 
              "1476-4660"
            ], 
            "name": "Nature Materials", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "keywords": [
          "dynamic response", 
          "metallic glasses", 
          "shear strain rate", 
          "stress relaxation experiments", 
          "strain rate", 
          "glass rheology", 
          "jamming phase diagram", 
          "fluid dynamics", 
          "rate range", 
          "shear stress", 
          "scaling law", 
          "dynamic behavior", 
          "universal scaling law", 
          "glass", 
          "nature of glass", 
          "orders of magnitude", 
          "wide rate range", 
          "rheology", 
          "comprehensive validation", 
          "relaxation experiments", 
          "thermodynamic variables", 
          "phase diagram", 
          "stress", 
          "liquid", 
          "temperature", 
          "law", 
          "behavior", 
          "structure", 
          "range", 
          "validation", 
          "diagram", 
          "wide variety", 
          "magnitude", 
          "experiments", 
          "order", 
          "dynamics", 
          "hundreds of years", 
          "volume", 
          "principles", 
          "trajectory space", 
          "nature", 
          "rate", 
          "response", 
          "timescales", 
          "hundreds", 
          "molecular structure", 
          "space", 
          "framework", 
          "variables", 
          "variety", 
          "knowledge", 
          "years", 
          "similarity", 
          "hypothesis", 
          "conjecture"
        ], 
        "name": "Universal scaling law of glass rheology", 
        "pagination": "404-409", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1145120722"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41563-021-01185-y"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "35102307"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41563-021-01185-y", 
          "https://app.dimensions.ai/details/publication/pub.1145120722"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_923.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41563-021-01185-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41563-021-01185-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41563-021-01185-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41563-021-01185-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41563-021-01185-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    215 TRIPLES      21 PREDICATES      98 URIs      76 LITERALS      11 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41563-021-01185-y schema:about N6580253eddc840758fb0ef4c8561a12c
    2 N82e1b8568f7f460abb020aa0ead3307e
    3 N9168d37dbe4c436fbcbafcb2f5148c22
    4 Nd4b2dcd498c1463da6dd911ba2e5fb48
    5 anzsrc-for:18
    6 anzsrc-for:1801
    7 schema:author N171c136d09d64eacb77f0eaf8960f8ae
    8 schema:citation sg:pub.10.1007/978-1-4419-7649-9
    9 sg:pub.10.1007/s00339-004-2625-y
    10 sg:pub.10.1038/23819
    11 sg:pub.10.1038/35081021
    12 sg:pub.10.1038/nature10667
    13 sg:pub.10.1038/ncomms6823
    14 sg:pub.10.1038/nmat4450
    15 sg:pub.10.1038/s41586-019-1145-z
    16 sg:pub.10.1557/jmr.1988.0931
    17 sg:pub.10.1557/jmr.1992.1564
    18 sg:pub.10.1557/jmr.1995.2024
    19 sg:pub.10.1557/jmr.2008.0217
    20 sg:pub.10.1557/jmr.2009.0145
    21 sg:pub.10.1557/mrs2007.127
    22 schema:datePublished 2022-01-31
    23 schema:datePublishedReg 2022-01-31
    24 schema:description The similarity in atomic/molecular structure between liquids and glasses has stimulated a long-standing hypothesis that the nature of glasses may be more fluid-like, rather than the apparent solid. In principle, the nature of glasses can be characterized by the dynamic response of their rheology in a wide rate range, but this has not been realized experimentally, to the best of our knowledge. Here we report the dynamic response of shear stress to the shear strain rate of metallic glasses over a timescale of nine orders of magnitude, equivalent to hundreds of years, by broadband stress relaxation experiments. The dynamic response of the metallic glasses, together with other ‘glasses’, follows a universal scaling law within the framework of fluid dynamics. The universal scaling law provides comprehensive validation of the conjecture on the jamming (dynamic) phase diagram by which the dynamic behaviours of a wide variety of ‘glasses’ can be unified under one rubric parameterized by the thermodynamic variables of temperature, volume and stress in the trajectory space.
    25 schema:genre article
    26 schema:isAccessibleForFree true
    27 schema:isPartOf N327c57cf2b4b4512b3d463a810658683
    28 Ndd08f576770e4a4dbcadf3f5b9ab744b
    29 sg:journal.1031408
    30 schema:keywords behavior
    31 comprehensive validation
    32 conjecture
    33 diagram
    34 dynamic behavior
    35 dynamic response
    36 dynamics
    37 experiments
    38 fluid dynamics
    39 framework
    40 glass
    41 glass rheology
    42 hundreds
    43 hundreds of years
    44 hypothesis
    45 jamming phase diagram
    46 knowledge
    47 law
    48 liquid
    49 magnitude
    50 metallic glasses
    51 molecular structure
    52 nature
    53 nature of glass
    54 order
    55 orders of magnitude
    56 phase diagram
    57 principles
    58 range
    59 rate
    60 rate range
    61 relaxation experiments
    62 response
    63 rheology
    64 scaling law
    65 shear strain rate
    66 shear stress
    67 similarity
    68 space
    69 strain rate
    70 stress
    71 stress relaxation experiments
    72 structure
    73 temperature
    74 thermodynamic variables
    75 timescales
    76 trajectory space
    77 universal scaling law
    78 validation
    79 variables
    80 variety
    81 volume
    82 wide rate range
    83 wide variety
    84 years
    85 schema:name Universal scaling law of glass rheology
    86 schema:pagination 404-409
    87 schema:productId N124c797933304c208b75e61aad2b9b95
    88 N276bdd3fb0364c89ac451c5629de34c1
    89 Nac8ea5fc0d644e56bc70097addef7566
    90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1145120722
    91 https://doi.org/10.1038/s41563-021-01185-y
    92 schema:sdDatePublished 2022-09-02T16:07
    93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    94 schema:sdPublisher N6e1f537728204243a40fb62f7a67c771
    95 schema:url https://doi.org/10.1038/s41563-021-01185-y
    96 sgo:license sg:explorer/license/
    97 sgo:sdDataset articles
    98 rdf:type schema:ScholarlyArticle
    99 N124c797933304c208b75e61aad2b9b95 schema:name pubmed_id
    100 schema:value 35102307
    101 rdf:type schema:PropertyValue
    102 N171c136d09d64eacb77f0eaf8960f8ae rdf:first sg:person.010046770425.80
    103 rdf:rest N57a52fd860aa4c66a6585fbb56c6a494
    104 N276bdd3fb0364c89ac451c5629de34c1 schema:name dimensions_id
    105 schema:value pub.1145120722
    106 rdf:type schema:PropertyValue
    107 N327c57cf2b4b4512b3d463a810658683 schema:issueNumber 4
    108 rdf:type schema:PublicationIssue
    109 N57a52fd860aa4c66a6585fbb56c6a494 rdf:first sg:person.01002677477.73
    110 rdf:rest Nede27503c11b48caa4f2b0305aac0e25
    111 N6580253eddc840758fb0ef4c8561a12c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Stress, Mechanical
    113 rdf:type schema:DefinedTerm
    114 N6e1f537728204243a40fb62f7a67c771 schema:name Springer Nature - SN SciGraph project
    115 rdf:type schema:Organization
    116 N82e1b8568f7f460abb020aa0ead3307e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Temperature
    118 rdf:type schema:DefinedTerm
    119 N9168d37dbe4c436fbcbafcb2f5148c22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Rheology
    121 rdf:type schema:DefinedTerm
    122 Nac8ea5fc0d644e56bc70097addef7566 schema:name doi
    123 schema:value 10.1038/s41563-021-01185-y
    124 rdf:type schema:PropertyValue
    125 Nd4b2dcd498c1463da6dd911ba2e5fb48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Thermodynamics
    127 rdf:type schema:DefinedTerm
    128 Ndd08f576770e4a4dbcadf3f5b9ab744b schema:volumeNumber 21
    129 rdf:type schema:PublicationVolume
    130 Nede27503c11b48caa4f2b0305aac0e25 rdf:first sg:person.01111213505.34
    131 rdf:rest rdf:nil
    132 anzsrc-for:18 schema:inDefinedTermSet anzsrc-for:
    133 schema:name Law and Legal Studies
    134 rdf:type schema:DefinedTerm
    135 anzsrc-for:1801 schema:inDefinedTermSet anzsrc-for:
    136 schema:name Law
    137 rdf:type schema:DefinedTerm
    138 sg:grant.7703555 http://pending.schema.org/fundedItem sg:pub.10.1038/s41563-021-01185-y
    139 rdf:type schema:MonetaryGrant
    140 sg:grant.9415460 http://pending.schema.org/fundedItem sg:pub.10.1038/s41563-021-01185-y
    141 rdf:type schema:MonetaryGrant
    142 sg:journal.1031408 schema:issn 1476-1122
    143 1476-4660
    144 schema:name Nature Materials
    145 schema:publisher Springer Nature
    146 rdf:type schema:Periodical
    147 sg:person.01002677477.73 schema:affiliation grid-institutes:grid.8547.e
    148 schema:familyName Zhu
    149 schema:givenName Fan
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002677477.73
    151 rdf:type schema:Person
    152 sg:person.010046770425.80 schema:affiliation grid-institutes:grid.16821.3c
    153 schema:familyName Song
    154 schema:givenName Shuangxi
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010046770425.80
    156 rdf:type schema:Person
    157 sg:person.01111213505.34 schema:affiliation grid-institutes:grid.21107.35
    158 schema:familyName Chen
    159 schema:givenName Mingwei
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111213505.34
    161 rdf:type schema:Person
    162 sg:pub.10.1007/978-1-4419-7649-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026062638
    163 https://doi.org/10.1007/978-1-4419-7649-9
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s00339-004-2625-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1012578011
    166 https://doi.org/10.1007/s00339-004-2625-y
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/23819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048809826
    169 https://doi.org/10.1038/23819
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/35081021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022509262
    172 https://doi.org/10.1038/35081021
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/nature10667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028491278
    175 https://doi.org/10.1038/nature10667
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/ncomms6823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017749130
    178 https://doi.org/10.1038/ncomms6823
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/nmat4450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014198847
    181 https://doi.org/10.1038/nmat4450
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/s41586-019-1145-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1113858723
    184 https://doi.org/10.1038/s41586-019-1145-z
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1557/jmr.1988.0931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022182547
    187 https://doi.org/10.1557/jmr.1988.0931
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1557/jmr.1992.1564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043643805
    190 https://doi.org/10.1557/jmr.1992.1564
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1557/jmr.1995.2024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053642044
    193 https://doi.org/10.1557/jmr.1995.2024
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1557/jmr.2008.0217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002963338
    196 https://doi.org/10.1557/jmr.2008.0217
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1557/jmr.2009.0145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010270075
    199 https://doi.org/10.1557/jmr.2009.0145
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1557/mrs2007.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067969209
    202 https://doi.org/10.1557/mrs2007.127
    203 rdf:type schema:CreativeWork
    204 grid-institutes:grid.16821.3c schema:alternateName State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China
    205 schema:name State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China
    206 rdf:type schema:Organization
    207 grid-institutes:grid.21107.35 schema:alternateName Department of Materials Science and Engineering, Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, USA
    208 schema:name Department of Materials Science and Engineering, Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, USA
    209 WPI Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
    210 rdf:type schema:Organization
    211 grid-institutes:grid.8547.e schema:alternateName Department of Materials Science, Fudan University, Shanghai, China
    212 schema:name Department of Materials Science, Fudan University, Shanghai, China
    213 State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China
    214 WPI Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
    215 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...