Complex assemblies and crystals guided by DNA View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-06-24

AUTHORS

Shuoxing Jiang, Fei Zhang, Hao Yan

ABSTRACT

The complexity of DNA-programmed nanoparticle assemblies has reached an unprecedented level owing to recent advances that enable delicate and comprehensive control over the formation of DNA bonds.

PAGES

694-700

References to SciGraph publications

  • 2016-06-13. Self-organized architectures from assorted DNA-framed nanoparticles in NATURE CHEMISTRY
  • 2009-09-03. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal in NATURE
  • 2019-12-23. Programming nanoparticle valence bonds with single-stranded DNA encoders in NATURE MATERIALS
  • 2017-12-04. DNA-imprinted polymer nanoparticles with monodispersity and prescribed DNA-strand patterns in NATURE CHEMISTRY
  • 2020-01-13. Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels in NATURE MATERIALS
  • 2009-12-24. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles in NATURE NANOTECHNOLOGY
  • 2015-04-23. Superlattices assembled through shape-induced directional binding in NATURE COMMUNICATIONS
  • 2009-12-20. Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands in NATURE NANOTECHNOLOGY
  • 2016-02-22. Lattice engineering through nanoparticle–DNA frameworks in NATURE MATERIALS
  • 2015-05-25. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames in NATURE NANOTECHNOLOGY
  • 2017-11-08. DNA nanotechnology in NATURE REVIEWS MATERIALS
  • 2015-07-23. DNA-linked superlattices get into shape in NATURE MATERIALS
  • 2018-12-03. Regioselective surface encoding of nanoparticles for programmable self-assembly in NATURE MATERIALS
  • 2019-02-18. Crystal engineering with DNA in NATURE REVIEWS MATERIALS
  • 2015-05-25. Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization in NATURE MATERIALS
  • 2017-03-14. A device that operates within a self-assembled 3D DNA crystal in NATURE CHEMISTRY
  • 2016-03-01. Using DNA to program the self-assembly of colloidal nanoparticles and microparticles in NATURE REVIEWS MATERIALS
  • 2016-01-04. Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles in NATURE CHEMISTRY
  • 2015-05-25. Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions in NATURE MATERIALS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41563-020-0719-3

    DOI

    http://dx.doi.org/10.1038/s41563-020-0719-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1128717744

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/32581353


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.215654.1", 
              "name": [
                "Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jiang", 
            "givenName": "Shuoxing", 
            "id": "sg:person.01073126153.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073126153.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemistry, Rutgers University, Newark, NJ, USA", 
              "id": "http://www.grid.ac/institutes/grid.430387.b", 
              "name": [
                "Department of Chemistry, Rutgers University, Newark, NJ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Fei", 
            "id": "sg:person.01227175741.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227175741.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.215654.1", 
              "name": [
                "Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yan", 
            "givenName": "Hao", 
            "id": "sg:person.0727257441.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727257441.61"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41563-019-0549-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123604594", 
              "https://doi.org/10.1038/s41563-019-0549-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4571", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032817248", 
              "https://doi.org/10.1038/nmat4571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2009.453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051985394", 
              "https://doi.org/10.1038/nnano.2009.453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2015.105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025552525", 
              "https://doi.org/10.1038/nnano.2015.105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms7912", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009122267", 
              "https://doi.org/10.1038/ncomms7912"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4296", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051748533", 
              "https://doi.org/10.1038/nmat4296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4293", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026559130", 
              "https://doi.org/10.1038/nmat4293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2009.378", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040474209", 
              "https://doi.org/10.1038/nnano.2009.378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.2893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093153238", 
              "https://doi.org/10.1038/nchem.2893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41563-018-0231-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110155367", 
              "https://doi.org/10.1038/s41563-018-0231-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41563-019-0550-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124048604", 
              "https://doi.org/10.1038/s41563-019-0550-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4376", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025776324", 
              "https://doi.org/10.1038/nmat4376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.2540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026615763", 
              "https://doi.org/10.1038/nchem.2540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.2745", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128714", 
              "https://doi.org/10.1038/nchem.2745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/natrevmats.2016.8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028018313", 
              "https://doi.org/10.1038/natrevmats.2016.8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013163341", 
              "https://doi.org/10.1038/nature08274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/natrevmats.2017.68", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092573700", 
              "https://doi.org/10.1038/natrevmats.2017.68"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.2420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049314897", 
              "https://doi.org/10.1038/nchem.2420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41578-019-0087-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112201936", 
              "https://doi.org/10.1038/s41578-019-0087-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-06-24", 
        "datePublishedReg": "2020-06-24", 
        "description": "The complexity of DNA-programmed nanoparticle assemblies has reached an unprecedented level owing to recent advances that enable delicate and comprehensive control over the formation of DNA bonds.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41563-020-0719-3", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1031408", 
            "issn": [
              "1476-1122", 
              "1476-4660"
            ], 
            "name": "Nature Materials", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "keywords": [
          "complex assembly", 
          "DNA bonds", 
          "assembly", 
          "recent advances", 
          "DNA", 
          "nanoparticle assemblies", 
          "unprecedented level", 
          "formation", 
          "advances", 
          "levels", 
          "bonds", 
          "crystals", 
          "control", 
          "complexity", 
          "comprehensive control"
        ], 
        "name": "Complex assemblies and crystals guided by DNA", 
        "pagination": "694-700", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1128717744"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41563-020-0719-3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "32581353"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41563-020-0719-3", 
          "https://app.dimensions.ai/details/publication/pub.1128717744"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_846.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41563-020-0719-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41563-020-0719-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41563-020-0719-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41563-020-0719-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41563-020-0719-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    161 TRIPLES      20 PREDICATES      57 URIs      32 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41563-020-0719-3 schema:author N795cf1084d524369910d652c51300ea8
    2 schema:citation sg:pub.10.1038/natrevmats.2016.8
    3 sg:pub.10.1038/natrevmats.2017.68
    4 sg:pub.10.1038/nature08274
    5 sg:pub.10.1038/nchem.2420
    6 sg:pub.10.1038/nchem.2540
    7 sg:pub.10.1038/nchem.2745
    8 sg:pub.10.1038/nchem.2893
    9 sg:pub.10.1038/ncomms7912
    10 sg:pub.10.1038/nmat4293
    11 sg:pub.10.1038/nmat4296
    12 sg:pub.10.1038/nmat4376
    13 sg:pub.10.1038/nmat4571
    14 sg:pub.10.1038/nnano.2009.378
    15 sg:pub.10.1038/nnano.2009.453
    16 sg:pub.10.1038/nnano.2015.105
    17 sg:pub.10.1038/s41563-018-0231-1
    18 sg:pub.10.1038/s41563-019-0549-3
    19 sg:pub.10.1038/s41563-019-0550-x
    20 sg:pub.10.1038/s41578-019-0087-2
    21 schema:datePublished 2020-06-24
    22 schema:datePublishedReg 2020-06-24
    23 schema:description The complexity of DNA-programmed nanoparticle assemblies has reached an unprecedented level owing to recent advances that enable delicate and comprehensive control over the formation of DNA bonds.
    24 schema:genre article
    25 schema:isAccessibleForFree false
    26 schema:isPartOf N5fe8e67d337647b2a078b23fea2b8162
    27 Nfa2fe0cf95e0473eb92b046aced0d448
    28 sg:journal.1031408
    29 schema:keywords DNA
    30 DNA bonds
    31 advances
    32 assembly
    33 bonds
    34 complex assembly
    35 complexity
    36 comprehensive control
    37 control
    38 crystals
    39 formation
    40 levels
    41 nanoparticle assemblies
    42 recent advances
    43 unprecedented level
    44 schema:name Complex assemblies and crystals guided by DNA
    45 schema:pagination 694-700
    46 schema:productId N0e41b23766414bef8c4320b5018b4fcb
    47 N16414f8ecfc849908f34d787897928b4
    48 N8ac4bf6bcc9a442a97681ec99a905758
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128717744
    50 https://doi.org/10.1038/s41563-020-0719-3
    51 schema:sdDatePublished 2022-08-04T17:08
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher N811858ae25214ba6b09a11edfa7e6662
    54 schema:url https://doi.org/10.1038/s41563-020-0719-3
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N0e41b23766414bef8c4320b5018b4fcb schema:name pubmed_id
    59 schema:value 32581353
    60 rdf:type schema:PropertyValue
    61 N16414f8ecfc849908f34d787897928b4 schema:name dimensions_id
    62 schema:value pub.1128717744
    63 rdf:type schema:PropertyValue
    64 N51d7baba7c7b462d968c78574a426bb7 rdf:first sg:person.0727257441.61
    65 rdf:rest rdf:nil
    66 N5fe8e67d337647b2a078b23fea2b8162 schema:issueNumber 7
    67 rdf:type schema:PublicationIssue
    68 N795cf1084d524369910d652c51300ea8 rdf:first sg:person.01073126153.50
    69 rdf:rest Nac8f1576530f4334a34022a6b8436515
    70 N811858ae25214ba6b09a11edfa7e6662 schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 N8ac4bf6bcc9a442a97681ec99a905758 schema:name doi
    73 schema:value 10.1038/s41563-020-0719-3
    74 rdf:type schema:PropertyValue
    75 Nac8f1576530f4334a34022a6b8436515 rdf:first sg:person.01227175741.13
    76 rdf:rest N51d7baba7c7b462d968c78574a426bb7
    77 Nfa2fe0cf95e0473eb92b046aced0d448 schema:volumeNumber 19
    78 rdf:type schema:PublicationVolume
    79 sg:journal.1031408 schema:issn 1476-1122
    80 1476-4660
    81 schema:name Nature Materials
    82 schema:publisher Springer Nature
    83 rdf:type schema:Periodical
    84 sg:person.01073126153.50 schema:affiliation grid-institutes:grid.215654.1
    85 schema:familyName Jiang
    86 schema:givenName Shuoxing
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073126153.50
    88 rdf:type schema:Person
    89 sg:person.01227175741.13 schema:affiliation grid-institutes:grid.430387.b
    90 schema:familyName Zhang
    91 schema:givenName Fei
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227175741.13
    93 rdf:type schema:Person
    94 sg:person.0727257441.61 schema:affiliation grid-institutes:grid.215654.1
    95 schema:familyName Yan
    96 schema:givenName Hao
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727257441.61
    98 rdf:type schema:Person
    99 sg:pub.10.1038/natrevmats.2016.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028018313
    100 https://doi.org/10.1038/natrevmats.2016.8
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1038/natrevmats.2017.68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092573700
    103 https://doi.org/10.1038/natrevmats.2017.68
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1038/nature08274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013163341
    106 https://doi.org/10.1038/nature08274
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1038/nchem.2420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049314897
    109 https://doi.org/10.1038/nchem.2420
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1038/nchem.2540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026615763
    112 https://doi.org/10.1038/nchem.2540
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1038/nchem.2745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128714
    115 https://doi.org/10.1038/nchem.2745
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1038/nchem.2893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093153238
    118 https://doi.org/10.1038/nchem.2893
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1038/ncomms7912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009122267
    121 https://doi.org/10.1038/ncomms7912
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1038/nmat4293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026559130
    124 https://doi.org/10.1038/nmat4293
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1038/nmat4296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051748533
    127 https://doi.org/10.1038/nmat4296
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1038/nmat4376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025776324
    130 https://doi.org/10.1038/nmat4376
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1038/nmat4571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032817248
    133 https://doi.org/10.1038/nmat4571
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1038/nnano.2009.378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040474209
    136 https://doi.org/10.1038/nnano.2009.378
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1038/nnano.2009.453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051985394
    139 https://doi.org/10.1038/nnano.2009.453
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1038/nnano.2015.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025552525
    142 https://doi.org/10.1038/nnano.2015.105
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1038/s41563-018-0231-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110155367
    145 https://doi.org/10.1038/s41563-018-0231-1
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1038/s41563-019-0549-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123604594
    148 https://doi.org/10.1038/s41563-019-0549-3
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1038/s41563-019-0550-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1124048604
    151 https://doi.org/10.1038/s41563-019-0550-x
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1038/s41578-019-0087-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112201936
    154 https://doi.org/10.1038/s41578-019-0087-2
    155 rdf:type schema:CreativeWork
    156 grid-institutes:grid.215654.1 schema:alternateName Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
    157 schema:name Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
    158 rdf:type schema:Organization
    159 grid-institutes:grid.430387.b schema:alternateName Department of Chemistry, Rutgers University, Newark, NJ, USA
    160 schema:name Department of Chemistry, Rutgers University, Newark, NJ, USA
    161 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...