Binary molecular-semiconductor p–n junctions for photoelectrocatalytic CO2 reduction View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Bing Shan, Srinivas Vanka, Ting-Ting Li, Ludovic Troian-Gautier, M. Kyle Brennaman, Zetian Mi, Thomas J. Meyer

ABSTRACT

In one approach to solar energy conversion, light-harvesting sensitizers absorb and convert photons into electron–hole pairs to drive water splitting or CO2 reduction to produce fuels. Despite recent progress in photoelectrocatalytic cells, experimental realization of a high-performance photocathode for solar-driven CO2 reduction has proven difficult. Here, we use a binary p–n junction strategy to prepare a series of photocathodes that convert sunlight into high-energy electrons for efficient CO2 reduction to formate. The photocathodes integrate a semiconductor p–n junction comprising GaN nanowire arrays on silicon, with molecular p–n junctions self-assembled on the semiconductor surface. Solar irradiation of the photocathodes generates redox-separated states that interact to form an intermediate state with remotely separated electrons and holes at the catalyst and semiconductor, respectively. The photocathodes reduce CO2 to formate at stable photocurrent densities of around −1.1 mA cm−2 during 20 h of irradiation with Faradaic efficiencies of up to 64%. Driven by solar light, photoelectrocatalytic cells can convert CO2 into energy carriers, but strategies to improve their performance are still required. Here the authors combine molecular and semiconductor p–n junctions that have complementary absorption in the visible light range to convert CO2 to formate efficiently. More... »

PAGES

1-10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41560-019-0345-y

DOI

http://dx.doi.org/10.1038/s41560-019-0345-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112676696


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of North Carolina at Chapel Hill", 
          "id": "https://www.grid.ac/institutes/grid.10698.36", 
          "name": [
            "Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shan", 
        "givenName": "Bing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "McGill University", 
          "id": "https://www.grid.ac/institutes/grid.14709.3b", 
          "name": [
            "Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA", 
            "Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vanka", 
        "givenName": "Srinivas", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ningbo University", 
          "id": "https://www.grid.ac/institutes/grid.203507.3", 
          "name": [
            "Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA", 
            "Research Center of Applied Solid State Chemistry, Ningbo University, Ningbo, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Ting-Ting", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Carolina at Chapel Hill", 
          "id": "https://www.grid.ac/institutes/grid.10698.36", 
          "name": [
            "Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Troian-Gautier", 
        "givenName": "Ludovic", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Carolina at Chapel Hill", 
          "id": "https://www.grid.ac/institutes/grid.10698.36", 
          "name": [
            "Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brennaman", 
        "givenName": "M. Kyle", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mi", 
        "givenName": "Zetian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Carolina at Chapel Hill", 
          "id": "https://www.grid.ac/institutes/grid.10698.36", 
          "name": [
            "Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meyer", 
        "givenName": "Thomas J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-328x(90)85224-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002079294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja200652r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003841046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja200652r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003841046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.chemrev.5b00370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004891616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005694235", 
          "https://doi.org/10.1038/nmat4511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201606424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006858953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6sc00715e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009613082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/chem.201601642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010842132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6cp07939c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011781586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccr.2012.04.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013561211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6sc02477g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015097607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6ee02903e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017661772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.2536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017681152", 
          "https://doi.org/10.1038/nchem.2536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017930377", 
          "https://doi.org/10.1038/ncomms8326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5sc01752a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017982343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4sc00875h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019615942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35104607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025421157", 
          "https://doi.org/10.1038/35104607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35104607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025421157", 
          "https://doi.org/10.1038/35104607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201206882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025479329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar5001605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025642958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar9001679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026219814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar9001679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026219814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaf5039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026483374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201411170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029152869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1119863109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033921922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms12555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039718070", 
          "https://doi.org/10.1038/ncomms12555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1251428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041768857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jacs.6b09212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044450884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jacs.6b09212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044450884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja108801m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048616268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja108801m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048616268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja981742j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049010816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aenm.201400739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050506319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b802262n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050644619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr900356p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053888081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr900356p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053888081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsami.5b11836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055129175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acscatal.6b03107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055134785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar900267k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055151984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar900267k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055151984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm303172w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055415161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic00128a028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055543690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic4014976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055565630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic700796m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055581692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic700796m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055581692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic9701975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055587508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic9701975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055587508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jacs.5b04856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055874185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp972890j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056126022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp972890j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056126022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1504499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057713700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpcc.6b12416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084123317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/natrevmats.2017.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090938233", 
          "https://doi.org/10.1038/natrevmats.2017.50"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7cs00322f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091293504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2399-1984/aa88a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091357511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpclett.7b01911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091434117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.inorgchem.7b02758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099700928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsaem.8b00076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101201608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jacs.8b03453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103658641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.8b03087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106946693"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "In one approach to solar energy conversion, light-harvesting sensitizers absorb and convert photons into electron\u2013hole pairs to drive water splitting or CO2 reduction to produce fuels. Despite recent progress in photoelectrocatalytic cells, experimental realization of a high-performance photocathode for solar-driven CO2 reduction has proven difficult. Here, we use a binary p\u2013n junction strategy to prepare a series of photocathodes that convert sunlight into high-energy electrons for efficient CO2 reduction to formate. The photocathodes integrate a semiconductor p\u2013n junction comprising GaN nanowire arrays on silicon, with molecular p\u2013n junctions self-assembled on the semiconductor surface. Solar irradiation of the photocathodes generates redox-separated states that interact to form an intermediate state with remotely separated electrons and holes at the catalyst and semiconductor, respectively. The photocathodes reduce CO2 to formate at stable photocurrent densities of around \u22121.1 mA cm\u22122 during 20 h of irradiation with Faradaic efficiencies of up to 64%. Driven by solar light, photoelectrocatalytic cells can convert CO2 into energy carriers, but strategies to improve their performance are still required. Here the authors combine molecular and semiconductor p\u2013n junctions that have complementary absorption in the visible light range to convert CO2 to formate efficiently.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41560-019-0345-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5302276", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4318398", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4320763", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136447", 
        "issn": [
          "2058-7546"
        ], 
        "name": "Nature Energy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Binary molecular-semiconductor p\u2013n junctions for photoelectrocatalytic CO2 reduction", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112676696"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41560-019-0345-y"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "82d0b083ffcb8534bb2944bfa51e306f0b06346f3526251be41aa3336bc8d351"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41560-019-0345-y", 
      "https://app.dimensions.ai/details/publication/pub.1112676696"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-16T06:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106834_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41560-019-0345-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41560-019-0345-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41560-019-0345-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41560-019-0345-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41560-019-0345-y'


 

This table displays all metadata directly associated to this object as RDF triples.

268 TRIPLES      21 PREDICATES      77 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41560-019-0345-y schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nc79a0a8b48914c5487821e5ef6049aa8
4 schema:citation sg:pub.10.1038/35104607
5 sg:pub.10.1038/natrevmats.2017.50
6 sg:pub.10.1038/nchem.2536
7 sg:pub.10.1038/ncomms12555
8 sg:pub.10.1038/ncomms8326
9 sg:pub.10.1038/nmat4511
10 https://doi.org/10.1002/aenm.201400739
11 https://doi.org/10.1002/anie.201206882
12 https://doi.org/10.1002/anie.201411170
13 https://doi.org/10.1002/anie.201606424
14 https://doi.org/10.1002/chem.201601642
15 https://doi.org/10.1016/0022-328x(90)85224-m
16 https://doi.org/10.1016/j.ccr.2012.04.017
17 https://doi.org/10.1021/acs.chemrev.5b00370
18 https://doi.org/10.1021/acs.inorgchem.7b02758
19 https://doi.org/10.1021/acs.jpcc.6b12416
20 https://doi.org/10.1021/acs.jpclett.7b01911
21 https://doi.org/10.1021/acs.nanolett.8b03087
22 https://doi.org/10.1021/acsaem.8b00076
23 https://doi.org/10.1021/acsami.5b11836
24 https://doi.org/10.1021/acscatal.6b03107
25 https://doi.org/10.1021/ar5001605
26 https://doi.org/10.1021/ar9001679
27 https://doi.org/10.1021/ar900267k
28 https://doi.org/10.1021/cm303172w
29 https://doi.org/10.1021/cr900356p
30 https://doi.org/10.1021/ic00128a028
31 https://doi.org/10.1021/ic4014976
32 https://doi.org/10.1021/ic700796m
33 https://doi.org/10.1021/ic9701975
34 https://doi.org/10.1021/ja108801m
35 https://doi.org/10.1021/ja200652r
36 https://doi.org/10.1021/ja981742j
37 https://doi.org/10.1021/jacs.5b04856
38 https://doi.org/10.1021/jacs.6b09212
39 https://doi.org/10.1021/jacs.8b03453
40 https://doi.org/10.1021/jp972890j
41 https://doi.org/10.1039/b802262n
42 https://doi.org/10.1039/c4sc00875h
43 https://doi.org/10.1039/c5sc01752a
44 https://doi.org/10.1039/c6cp07939c
45 https://doi.org/10.1039/c6ee02903e
46 https://doi.org/10.1039/c6sc00715e
47 https://doi.org/10.1039/c6sc02477g
48 https://doi.org/10.1039/c7cs00322f
49 https://doi.org/10.1063/1.1504499
50 https://doi.org/10.1073/pnas.1119863109
51 https://doi.org/10.1088/2399-1984/aa88a1
52 https://doi.org/10.1126/science.1251428
53 https://doi.org/10.1126/science.aaf5039
54 schema:datePublished 2019-04
55 schema:datePublishedReg 2019-04-01
56 schema:description In one approach to solar energy conversion, light-harvesting sensitizers absorb and convert photons into electron–hole pairs to drive water splitting or CO2 reduction to produce fuels. Despite recent progress in photoelectrocatalytic cells, experimental realization of a high-performance photocathode for solar-driven CO2 reduction has proven difficult. Here, we use a binary p–n junction strategy to prepare a series of photocathodes that convert sunlight into high-energy electrons for efficient CO2 reduction to formate. The photocathodes integrate a semiconductor p–n junction comprising GaN nanowire arrays on silicon, with molecular p–n junctions self-assembled on the semiconductor surface. Solar irradiation of the photocathodes generates redox-separated states that interact to form an intermediate state with remotely separated electrons and holes at the catalyst and semiconductor, respectively. The photocathodes reduce CO2 to formate at stable photocurrent densities of around −1.1 mA cm−2 during 20 h of irradiation with Faradaic efficiencies of up to 64%. Driven by solar light, photoelectrocatalytic cells can convert CO2 into energy carriers, but strategies to improve their performance are still required. Here the authors combine molecular and semiconductor p–n junctions that have complementary absorption in the visible light range to convert CO2 to formate efficiently.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree false
60 schema:isPartOf N38418d446be347f28bb97ab0bc92d7c3
61 Ne4cf5b91eeca484ab9b67a3ded862392
62 sg:journal.1136447
63 schema:name Binary molecular-semiconductor p–n junctions for photoelectrocatalytic CO2 reduction
64 schema:pagination 1-10
65 schema:productId N2d8a736a0b7049e19d714549a6365785
66 Nb9905bb60f35441ab0f0e1254409b348
67 Nd5a6b3b638a84b58b8d0d2088d259758
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112676696
69 https://doi.org/10.1038/s41560-019-0345-y
70 schema:sdDatePublished 2019-04-16T06:25
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N129dd0df38c2454f99bde09c5bac204a
73 schema:url https://www.nature.com/articles/s41560-019-0345-y
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N05a0ad73e3d146c8b2bc03e20d1a3560 schema:affiliation https://www.grid.ac/institutes/grid.10698.36
78 schema:familyName Meyer
79 schema:givenName Thomas J.
80 rdf:type schema:Person
81 N1016d5b510924b009b9b194cb91299a4 rdf:first Ne34d9be988b04c5c88f9a48e37f74864
82 rdf:rest N75cf6c70c9a744c2a29853e0d33e99d4
83 N129dd0df38c2454f99bde09c5bac204a schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N1b3d616558c34dc1bbe9a9dda50fb09f schema:affiliation https://www.grid.ac/institutes/grid.14709.3b
86 schema:familyName Vanka
87 schema:givenName Srinivas
88 rdf:type schema:Person
89 N2d8a736a0b7049e19d714549a6365785 schema:name doi
90 schema:value 10.1038/s41560-019-0345-y
91 rdf:type schema:PropertyValue
92 N38418d446be347f28bb97ab0bc92d7c3 schema:issueNumber 4
93 rdf:type schema:PublicationIssue
94 N75cf6c70c9a744c2a29853e0d33e99d4 rdf:first N7aa13ad558f041a3b8b4b8572e2a31e8
95 rdf:rest Nccaa0b3fa4254e34ac6d75dea409ae2e
96 N7aa13ad558f041a3b8b4b8572e2a31e8 schema:affiliation https://www.grid.ac/institutes/grid.10698.36
97 schema:familyName Brennaman
98 schema:givenName M. Kyle
99 rdf:type schema:Person
100 N8b4c0c19fe0146f2a8a0bfa527777788 schema:affiliation https://www.grid.ac/institutes/grid.10698.36
101 schema:familyName Shan
102 schema:givenName Bing
103 rdf:type schema:Person
104 Nb031d90dd079449aab8cb1c361b4019e schema:affiliation https://www.grid.ac/institutes/grid.203507.3
105 schema:familyName Li
106 schema:givenName Ting-Ting
107 rdf:type schema:Person
108 Nb220bfe7ceae4d55bcd4988bcba6ff9c rdf:first Nb031d90dd079449aab8cb1c361b4019e
109 rdf:rest N1016d5b510924b009b9b194cb91299a4
110 Nb9905bb60f35441ab0f0e1254409b348 schema:name dimensions_id
111 schema:value pub.1112676696
112 rdf:type schema:PropertyValue
113 Nc79a0a8b48914c5487821e5ef6049aa8 rdf:first N8b4c0c19fe0146f2a8a0bfa527777788
114 rdf:rest Nedc181aba24b44099ad8b839744ba4d8
115 Nccaa0b3fa4254e34ac6d75dea409ae2e rdf:first Nfe22fe612d264a09a2b1245adc6f8b53
116 rdf:rest Nf5a317a1447941d193a82f232007c4a1
117 Nd5a6b3b638a84b58b8d0d2088d259758 schema:name readcube_id
118 schema:value 82d0b083ffcb8534bb2944bfa51e306f0b06346f3526251be41aa3336bc8d351
119 rdf:type schema:PropertyValue
120 Ne34d9be988b04c5c88f9a48e37f74864 schema:affiliation https://www.grid.ac/institutes/grid.10698.36
121 schema:familyName Troian-Gautier
122 schema:givenName Ludovic
123 rdf:type schema:Person
124 Ne4cf5b91eeca484ab9b67a3ded862392 schema:volumeNumber 4
125 rdf:type schema:PublicationVolume
126 Nedc181aba24b44099ad8b839744ba4d8 rdf:first N1b3d616558c34dc1bbe9a9dda50fb09f
127 rdf:rest Nb220bfe7ceae4d55bcd4988bcba6ff9c
128 Nf5a317a1447941d193a82f232007c4a1 rdf:first N05a0ad73e3d146c8b2bc03e20d1a3560
129 rdf:rest rdf:nil
130 Nfe22fe612d264a09a2b1245adc6f8b53 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
131 schema:familyName Mi
132 schema:givenName Zetian
133 rdf:type schema:Person
134 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
135 schema:name Chemical Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
138 schema:name Physical Chemistry (incl. Structural)
139 rdf:type schema:DefinedTerm
140 sg:grant.4318398 http://pending.schema.org/fundedItem sg:pub.10.1038/s41560-019-0345-y
141 rdf:type schema:MonetaryGrant
142 sg:grant.4320763 http://pending.schema.org/fundedItem sg:pub.10.1038/s41560-019-0345-y
143 rdf:type schema:MonetaryGrant
144 sg:grant.5302276 http://pending.schema.org/fundedItem sg:pub.10.1038/s41560-019-0345-y
145 rdf:type schema:MonetaryGrant
146 sg:journal.1136447 schema:issn 2058-7546
147 schema:name Nature Energy
148 rdf:type schema:Periodical
149 sg:pub.10.1038/35104607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025421157
150 https://doi.org/10.1038/35104607
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/natrevmats.2017.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090938233
153 https://doi.org/10.1038/natrevmats.2017.50
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nchem.2536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017681152
156 https://doi.org/10.1038/nchem.2536
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/ncomms12555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039718070
159 https://doi.org/10.1038/ncomms12555
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/ncomms8326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017930377
162 https://doi.org/10.1038/ncomms8326
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nmat4511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005694235
165 https://doi.org/10.1038/nmat4511
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/aenm.201400739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050506319
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/anie.201206882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025479329
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/anie.201411170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029152869
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/anie.201606424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006858953
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1002/chem.201601642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010842132
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/0022-328x(90)85224-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1002079294
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.ccr.2012.04.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013561211
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1021/acs.chemrev.5b00370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004891616
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1021/acs.inorgchem.7b02758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099700928
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1021/acs.jpcc.6b12416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084123317
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1021/acs.jpclett.7b01911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091434117
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1021/acs.nanolett.8b03087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106946693
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/acsaem.8b00076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101201608
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1021/acsami.5b11836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055129175
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1021/acscatal.6b03107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055134785
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1021/ar5001605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025642958
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1021/ar9001679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026219814
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1021/ar900267k schema:sameAs https://app.dimensions.ai/details/publication/pub.1055151984
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1021/cm303172w schema:sameAs https://app.dimensions.ai/details/publication/pub.1055415161
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1021/cr900356p schema:sameAs https://app.dimensions.ai/details/publication/pub.1053888081
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1021/ic00128a028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055543690
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1021/ic4014976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055565630
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1021/ic700796m schema:sameAs https://app.dimensions.ai/details/publication/pub.1055581692
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1021/ic9701975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055587508
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1021/ja108801m schema:sameAs https://app.dimensions.ai/details/publication/pub.1048616268
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1021/ja200652r schema:sameAs https://app.dimensions.ai/details/publication/pub.1003841046
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1021/ja981742j schema:sameAs https://app.dimensions.ai/details/publication/pub.1049010816
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1021/jacs.5b04856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055874185
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1021/jacs.6b09212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044450884
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1021/jacs.8b03453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103658641
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1021/jp972890j schema:sameAs https://app.dimensions.ai/details/publication/pub.1056126022
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1039/b802262n schema:sameAs https://app.dimensions.ai/details/publication/pub.1050644619
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1039/c4sc00875h schema:sameAs https://app.dimensions.ai/details/publication/pub.1019615942
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1039/c5sc01752a schema:sameAs https://app.dimensions.ai/details/publication/pub.1017982343
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1039/c6cp07939c schema:sameAs https://app.dimensions.ai/details/publication/pub.1011781586
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1039/c6ee02903e schema:sameAs https://app.dimensions.ai/details/publication/pub.1017661772
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1039/c6sc00715e schema:sameAs https://app.dimensions.ai/details/publication/pub.1009613082
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1039/c6sc02477g schema:sameAs https://app.dimensions.ai/details/publication/pub.1015097607
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1039/c7cs00322f schema:sameAs https://app.dimensions.ai/details/publication/pub.1091293504
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1063/1.1504499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057713700
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1073/pnas.1119863109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033921922
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1088/2399-1984/aa88a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091357511
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1126/science.1251428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041768857
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1126/science.aaf5039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026483374
254 rdf:type schema:CreativeWork
255 https://www.grid.ac/institutes/grid.10698.36 schema:alternateName University of North Carolina at Chapel Hill
256 schema:name Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
257 rdf:type schema:Organization
258 https://www.grid.ac/institutes/grid.14709.3b schema:alternateName McGill University
259 schema:name Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
260 Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec, Canada
261 rdf:type schema:Organization
262 https://www.grid.ac/institutes/grid.203507.3 schema:alternateName Ningbo University
263 schema:name Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
264 Research Center of Applied Solid State Chemistry, Ningbo University, Ningbo, China
265 rdf:type schema:Organization
266 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
267 schema:name Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
268 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...