Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12

AUTHORS

Arnaud J. Perez, Quentin Jacquet, Dmitry Batuk, Antonella Iadecola, Matthieu Saubanère, Gwenaëlle Rousse, Dominique Larcher, Hervé Vezin, Marie-Liesse Doublet, Jean-Marie Tarascon

ABSTRACT

The Li-rich rocksalt oxides Li2MO3 (M = 3d/4d/5d transition metal) are promising positive-electrode materials for Li-ion batteries, displaying capacities exceeding 300 mAh g–1 thanks to the participation of the oxygen non-bonding O(2p) orbitals in the redox process. Understanding the oxygen redox limitations and the role of the O/M ratio is therefore crucial for the rational design of materials with improved electrochemical performances. Here we push oxygen redox to its limits with the discovery of a Li3IrO4 compound (O/M = 4) that can reversibly take up and release 3.5 electrons per Ir and possesses the highest capacity ever reported for any positive insertion electrode. By quantitatively monitoring the oxidation process, we demonstrate the material’s instability against O2 release on removal of all Li. Our results show that the O/M parameter delineates the boundary between the material’s maximum capacity and its stability, hence providing valuable insights for further development of high-capacity materials. Anionic redox provides extra capacity for battery electrodes, but it is challenging to realize its full potential. Tarascon and colleagues report a record-high reversible capacity of 3.5 electrons per Ir in a Li3IrO4 phase, and discuss the importance of increasing the ratio of oxygen versus transition metal. More... »

PAGES

954-962

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41560-017-0042-7

DOI

http://dx.doi.org/10.1038/s41560-017-0042-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099619934


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Research Network on Electrochemical Energy Storage", 
          "id": "https://www.grid.ac/institutes/grid.494528.6", 
          "name": [
            "Coll\u00e8ge de France, Chimie du Solide et Energie, UMR 8260, 11 place Marcelin Berthelot, 75005, Paris, France", 
            "Sorbonne Universit\u00e9s - UPMC Univ. Paris 06, 4 Place Jussieu, 75005, Paris, France", 
            "R\u00e9seau sur le Stockage Electrochimique de l\u2019Energie (RS2E), FR CNRS 3459, Amiens, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perez", 
        "givenName": "Arnaud J.", 
        "id": "sg:person.016450077047.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016450077047.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Network on Electrochemical Energy Storage", 
          "id": "https://www.grid.ac/institutes/grid.494528.6", 
          "name": [
            "Coll\u00e8ge de France, Chimie du Solide et Energie, UMR 8260, 11 place Marcelin Berthelot, 75005, Paris, France", 
            "Sorbonne Universit\u00e9s - UPMC Univ. Paris 06, 4 Place Jussieu, 75005, Paris, France", 
            "R\u00e9seau sur le Stockage Electrochimique de l\u2019Energie (RS2E), FR CNRS 3459, Amiens, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jacquet", 
        "givenName": "Quentin", 
        "id": "sg:person.014021375216.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014021375216.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "Coll\u00e8ge de France, Chimie du Solide et Energie, UMR 8260, 11 place Marcelin Berthelot, 75005, Paris, France", 
            "EMAT, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Batuk", 
        "givenName": "Dmitry", 
        "id": "sg:person.0642573016.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642573016.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Network on Electrochemical Energy Storage", 
          "id": "https://www.grid.ac/institutes/grid.494528.6", 
          "name": [
            "R\u00e9seau sur le Stockage Electrochimique de l\u2019Energie (RS2E), FR CNRS 3459, Amiens, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iadecola", 
        "givenName": "Antonella", 
        "id": "sg:person.0646021311.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646021311.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Charles Gerhardt", 
          "id": "https://www.grid.ac/institutes/grid.462034.7", 
          "name": [
            "R\u00e9seau sur le Stockage Electrochimique de l\u2019Energie (RS2E), FR CNRS 3459, Amiens, France", 
            "Institut Charles Gerhardt, CNRS UMR 5253, Universit\u00e9 Montpellier, Place E. Bataillon, 34095, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sauban\u00e8re", 
        "givenName": "Matthieu", 
        "id": "sg:person.01140055126.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140055126.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Network on Electrochemical Energy Storage", 
          "id": "https://www.grid.ac/institutes/grid.494528.6", 
          "name": [
            "Coll\u00e8ge de France, Chimie du Solide et Energie, UMR 8260, 11 place Marcelin Berthelot, 75005, Paris, France", 
            "Sorbonne Universit\u00e9s - UPMC Univ. Paris 06, 4 Place Jussieu, 75005, Paris, France", 
            "R\u00e9seau sur le Stockage Electrochimique de l\u2019Energie (RS2E), FR CNRS 3459, Amiens, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rousse", 
        "givenName": "Gwena\u00eblle", 
        "id": "sg:person.0707044675.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707044675.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de R\u00e9activit\u00e9 et Chimie des Solides", 
          "id": "https://www.grid.ac/institutes/grid.463728.c", 
          "name": [
            "R\u00e9seau sur le Stockage Electrochimique de l\u2019Energie (RS2E), FR CNRS 3459, Amiens, France", 
            "Laboratoire de R\u00e9activit\u00e9 et Chimie des Solides, UMR CNRS 7314, 33 Rue Saint Leu, 80039, Amiens, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Larcher", 
        "givenName": "Dominique", 
        "id": "sg:person.07731574421.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07731574421.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lille 1 University", 
          "id": "https://www.grid.ac/institutes/grid.4461.7", 
          "name": [
            "R\u00e9seau sur le Stockage Electrochimique de l\u2019Energie (RS2E), FR CNRS 3459, Amiens, France", 
            "Universit\u00e9 Lille 1, CNRS UMR 8516-LASIR, 59655, Villeneuve d\u2019Ascq, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vezin", 
        "givenName": "Herv\u00e9", 
        "id": "sg:person.01173457536.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173457536.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Charles Gerhardt", 
          "id": "https://www.grid.ac/institutes/grid.462034.7", 
          "name": [
            "R\u00e9seau sur le Stockage Electrochimique de l\u2019Energie (RS2E), FR CNRS 3459, Amiens, France", 
            "Institut Charles Gerhardt, CNRS UMR 5253, Universit\u00e9 Montpellier, Place E. Bataillon, 34095, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doublet", 
        "givenName": "Marie-Liesse", 
        "id": "sg:person.014247162643.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014247162643.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Network on Electrochemical Energy Storage", 
          "id": "https://www.grid.ac/institutes/grid.494528.6", 
          "name": [
            "Coll\u00e8ge de France, Chimie du Solide et Energie, UMR 8260, 11 place Marcelin Berthelot, 75005, Paris, France", 
            "Sorbonne Universit\u00e9s - UPMC Univ. Paris 06, 4 Place Jussieu, 75005, Paris, France", 
            "R\u00e9seau sur le Stockage Electrochimique de l\u2019Energie (RS2E), FR CNRS 3459, Amiens, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tarascon", 
        "givenName": "Jean-Marie", 
        "id": "sg:person.01364322774.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364322774.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.aac8260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001033756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.3355977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001986420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/2.038306jes", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003749402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nenergy.2016.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003848579", 
          "https://doi.org/10.1038/nenergy.2016.111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004852838", 
          "https://doi.org/10.1038/nmat3699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.195131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005114637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.195131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005114637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b305220f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006416305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0927-0256(96)00008-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008708156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0909049505012719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014603829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.2524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015109496", 
          "https://doi.org/10.1038/nchem.2524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1504901112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016035103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.chemmater.5b04092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019549613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2738(90)90049-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026979081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2738(90)90049-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026979081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028644902", 
          "https://doi.org/10.1038/nmat4479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ay00571f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034857329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/2.0421606jes", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034916532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5ee03048j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038628627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6ee02328b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043241030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201000717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051914944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201000717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051914944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm101377h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055413799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm101377h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055413799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100076a005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055651928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00138a010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055709074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/712/1/012149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059166059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.36.2972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060543638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.36.2972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060543638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060560298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060560298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060587642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060587642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084129260", 
          "https://doi.org/10.1038/nmat4864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084129260", 
          "https://doi.org/10.1038/nmat4864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.chemmater.7b01511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085782656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7ee01782k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091376679"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "The Li-rich rocksalt oxides Li2MO3 (M = 3d/4d/5d transition metal) are promising positive-electrode materials for Li-ion batteries, displaying capacities exceeding 300 mAh g\u20131 thanks to the participation of the oxygen non-bonding O(2p) orbitals in the redox process. Understanding the oxygen redox limitations and the role of the O/M ratio is therefore crucial for the rational design of materials with improved electrochemical performances. Here we push oxygen redox to its limits with the discovery of a Li3IrO4 compound (O/M = 4) that can reversibly take up and release 3.5 electrons per Ir and possesses the highest capacity ever reported for any positive insertion electrode. By quantitatively monitoring the oxidation process, we demonstrate the material\u2019s instability against O2 release on removal of all Li. Our results show that the O/M parameter delineates the boundary between the material\u2019s maximum capacity and its stability, hence providing valuable insights for further development of high-capacity materials. Anionic redox provides extra capacity for battery electrodes, but it is challenging to realize its full potential. Tarascon and colleagues report a record-high reversible capacity of 3.5 electrons per Ir in a Li3IrO4 phase, and discuss the importance of increasing the ratio of oxygen versus transition metal.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41560-017-0042-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4273984", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136447", 
        "issn": [
          "2058-7546"
        ], 
        "name": "Nature Energy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4", 
    "pagination": "954-962", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "be038e5ce95ca9d857983fdfd69572823412a84f6f6818a1a2ae1844b6c1734c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41560-017-0042-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099619934"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41560-017-0042-7", 
      "https://app.dimensions.ai/details/publication/pub.1099619934"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41560-017-0042-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41560-017-0042-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41560-017-0042-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41560-017-0042-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41560-017-0042-7'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41560-017-0042-7 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nc0d96168f48749849194a776d3edb8cf
4 schema:citation sg:pub.10.1038/nchem.2524
5 sg:pub.10.1038/nenergy.2016.111
6 sg:pub.10.1038/nmat3699
7 sg:pub.10.1038/nmat4479
8 sg:pub.10.1038/nmat4864
9 https://doi.org/10.1002/adma.201000717
10 https://doi.org/10.1016/0167-2738(90)90049-w
11 https://doi.org/10.1016/0927-0256(96)00008-0
12 https://doi.org/10.1021/acs.chemmater.5b04092
13 https://doi.org/10.1021/acs.chemmater.7b01511
14 https://doi.org/10.1021/cm101377h
15 https://doi.org/10.1021/j100076a005
16 https://doi.org/10.1021/ja00138a010
17 https://doi.org/10.1039/b305220f
18 https://doi.org/10.1039/c4ay00571f
19 https://doi.org/10.1039/c5ee03048j
20 https://doi.org/10.1039/c6ee02328b
21 https://doi.org/10.1039/c7ee01782k
22 https://doi.org/10.1073/pnas.1504901112
23 https://doi.org/10.1088/1742-6596/712/1/012149
24 https://doi.org/10.1103/physrevb.36.2972
25 https://doi.org/10.1103/physrevb.44.943
26 https://doi.org/10.1103/physrevb.47.558
27 https://doi.org/10.1103/physrevb.57.1505
28 https://doi.org/10.1103/physrevb.86.195131
29 https://doi.org/10.1103/physrevlett.77.3865
30 https://doi.org/10.1107/s0909049505012719
31 https://doi.org/10.1126/science.aac8260
32 https://doi.org/10.1149/1.3355977
33 https://doi.org/10.1149/2.038306jes
34 https://doi.org/10.1149/2.0421606jes
35 schema:datePublished 2017-12
36 schema:datePublishedReg 2017-12-01
37 schema:description The Li-rich rocksalt oxides Li2MO3 (M = 3d/4d/5d transition metal) are promising positive-electrode materials for Li-ion batteries, displaying capacities exceeding 300 mAh g–1 thanks to the participation of the oxygen non-bonding O(2p) orbitals in the redox process. Understanding the oxygen redox limitations and the role of the O/M ratio is therefore crucial for the rational design of materials with improved electrochemical performances. Here we push oxygen redox to its limits with the discovery of a Li3IrO4 compound (O/M = 4) that can reversibly take up and release 3.5 electrons per Ir and possesses the highest capacity ever reported for any positive insertion electrode. By quantitatively monitoring the oxidation process, we demonstrate the material’s instability against O2 release on removal of all Li. Our results show that the O/M parameter delineates the boundary between the material’s maximum capacity and its stability, hence providing valuable insights for further development of high-capacity materials. Anionic redox provides extra capacity for battery electrodes, but it is challenging to realize its full potential. Tarascon and colleagues report a record-high reversible capacity of 3.5 electrons per Ir in a Li3IrO4 phase, and discuss the importance of increasing the ratio of oxygen versus transition metal.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N3b76e7085d5d477c909ce9ed5ee08165
42 Na2aa58df62a7477ab7eba7dd3ad4f68f
43 sg:journal.1136447
44 schema:name Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4
45 schema:pagination 954-962
46 schema:productId N09e32fbfe366455286cf026fa2fbee41
47 N47bae79afe84481093825d0242aa4562
48 Nad9eec7904e04d88bc85d3e6ca76e7cf
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099619934
50 https://doi.org/10.1038/s41560-017-0042-7
51 schema:sdDatePublished 2019-04-10T16:38
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N7023dcd7f7d24c78abf2010938c8d8c4
54 schema:url https://www.nature.com/articles/s41560-017-0042-7
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N02b8a0f7538244a98a227182cc169aa6 rdf:first sg:person.01364322774.51
59 rdf:rest rdf:nil
60 N09e32fbfe366455286cf026fa2fbee41 schema:name doi
61 schema:value 10.1038/s41560-017-0042-7
62 rdf:type schema:PropertyValue
63 N0d1c2b5c9432430c90aede5b9e8f1b9d rdf:first sg:person.0646021311.80
64 rdf:rest N51f4921af8ef43b88069b5e89e9fbe70
65 N3aaf2d0ae9f54b9fb3378546a7f5e66b rdf:first sg:person.07731574421.99
66 rdf:rest Nf2c36a3984cb4b91a1df5742745a1ff6
67 N3b76e7085d5d477c909ce9ed5ee08165 schema:issueNumber 12
68 rdf:type schema:PublicationIssue
69 N47bae79afe84481093825d0242aa4562 schema:name readcube_id
70 schema:value be038e5ce95ca9d857983fdfd69572823412a84f6f6818a1a2ae1844b6c1734c
71 rdf:type schema:PropertyValue
72 N4aab8e6194f84d01bf12234ece7a5bb8 rdf:first sg:person.0642573016.95
73 rdf:rest N0d1c2b5c9432430c90aede5b9e8f1b9d
74 N51f4921af8ef43b88069b5e89e9fbe70 rdf:first sg:person.01140055126.45
75 rdf:rest Nbe6f842ff346482bb6528ff11925ef17
76 N5750c54323b649feadcc53f2ac80c1a2 rdf:first sg:person.014021375216.20
77 rdf:rest N4aab8e6194f84d01bf12234ece7a5bb8
78 N7023dcd7f7d24c78abf2010938c8d8c4 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N9368c80ca9634c86b373345c508a7ec6 rdf:first sg:person.014247162643.07
81 rdf:rest N02b8a0f7538244a98a227182cc169aa6
82 Na2aa58df62a7477ab7eba7dd3ad4f68f schema:volumeNumber 2
83 rdf:type schema:PublicationVolume
84 Nad9eec7904e04d88bc85d3e6ca76e7cf schema:name dimensions_id
85 schema:value pub.1099619934
86 rdf:type schema:PropertyValue
87 Nbe6f842ff346482bb6528ff11925ef17 rdf:first sg:person.0707044675.37
88 rdf:rest N3aaf2d0ae9f54b9fb3378546a7f5e66b
89 Nc0d96168f48749849194a776d3edb8cf rdf:first sg:person.016450077047.60
90 rdf:rest N5750c54323b649feadcc53f2ac80c1a2
91 Nf2c36a3984cb4b91a1df5742745a1ff6 rdf:first sg:person.01173457536.77
92 rdf:rest N9368c80ca9634c86b373345c508a7ec6
93 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
94 schema:name Chemical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
97 schema:name Physical Chemistry (incl. Structural)
98 rdf:type schema:DefinedTerm
99 sg:grant.4273984 http://pending.schema.org/fundedItem sg:pub.10.1038/s41560-017-0042-7
100 rdf:type schema:MonetaryGrant
101 sg:journal.1136447 schema:issn 2058-7546
102 schema:name Nature Energy
103 rdf:type schema:Periodical
104 sg:person.01140055126.45 schema:affiliation https://www.grid.ac/institutes/grid.462034.7
105 schema:familyName Saubanère
106 schema:givenName Matthieu
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140055126.45
108 rdf:type schema:Person
109 sg:person.01173457536.77 schema:affiliation https://www.grid.ac/institutes/grid.4461.7
110 schema:familyName Vezin
111 schema:givenName Hervé
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173457536.77
113 rdf:type schema:Person
114 sg:person.01364322774.51 schema:affiliation https://www.grid.ac/institutes/grid.494528.6
115 schema:familyName Tarascon
116 schema:givenName Jean-Marie
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364322774.51
118 rdf:type schema:Person
119 sg:person.014021375216.20 schema:affiliation https://www.grid.ac/institutes/grid.494528.6
120 schema:familyName Jacquet
121 schema:givenName Quentin
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014021375216.20
123 rdf:type schema:Person
124 sg:person.014247162643.07 schema:affiliation https://www.grid.ac/institutes/grid.462034.7
125 schema:familyName Doublet
126 schema:givenName Marie-Liesse
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014247162643.07
128 rdf:type schema:Person
129 sg:person.016450077047.60 schema:affiliation https://www.grid.ac/institutes/grid.494528.6
130 schema:familyName Perez
131 schema:givenName Arnaud J.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016450077047.60
133 rdf:type schema:Person
134 sg:person.0642573016.95 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
135 schema:familyName Batuk
136 schema:givenName Dmitry
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642573016.95
138 rdf:type schema:Person
139 sg:person.0646021311.80 schema:affiliation https://www.grid.ac/institutes/grid.494528.6
140 schema:familyName Iadecola
141 schema:givenName Antonella
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646021311.80
143 rdf:type schema:Person
144 sg:person.0707044675.37 schema:affiliation https://www.grid.ac/institutes/grid.494528.6
145 schema:familyName Rousse
146 schema:givenName Gwenaëlle
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707044675.37
148 rdf:type schema:Person
149 sg:person.07731574421.99 schema:affiliation https://www.grid.ac/institutes/grid.463728.c
150 schema:familyName Larcher
151 schema:givenName Dominique
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07731574421.99
153 rdf:type schema:Person
154 sg:pub.10.1038/nchem.2524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015109496
155 https://doi.org/10.1038/nchem.2524
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nenergy.2016.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003848579
158 https://doi.org/10.1038/nenergy.2016.111
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nmat3699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004852838
161 https://doi.org/10.1038/nmat3699
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nmat4479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028644902
164 https://doi.org/10.1038/nmat4479
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nmat4864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129260
167 https://doi.org/10.1038/nmat4864
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/adma.201000717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051914944
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/0167-2738(90)90049-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1026979081
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/0927-0256(96)00008-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008708156
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1021/acs.chemmater.5b04092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019549613
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1021/acs.chemmater.7b01511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085782656
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1021/cm101377h schema:sameAs https://app.dimensions.ai/details/publication/pub.1055413799
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1021/j100076a005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055651928
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1021/ja00138a010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055709074
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1039/b305220f schema:sameAs https://app.dimensions.ai/details/publication/pub.1006416305
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1039/c4ay00571f schema:sameAs https://app.dimensions.ai/details/publication/pub.1034857329
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1039/c5ee03048j schema:sameAs https://app.dimensions.ai/details/publication/pub.1038628627
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1039/c6ee02328b schema:sameAs https://app.dimensions.ai/details/publication/pub.1043241030
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1039/c7ee01782k schema:sameAs https://app.dimensions.ai/details/publication/pub.1091376679
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1073/pnas.1504901112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016035103
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1088/1742-6596/712/1/012149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059166059
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevb.36.2972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060543638
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevb.44.943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060560298
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevb.47.558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060566310
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevb.57.1505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060587642
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevb.86.195131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005114637
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1107/s0909049505012719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014603829
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1126/science.aac8260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001033756
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1149/1.3355977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001986420
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1149/2.038306jes schema:sameAs https://app.dimensions.ai/details/publication/pub.1003749402
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1149/2.0421606jes schema:sameAs https://app.dimensions.ai/details/publication/pub.1034916532
220 rdf:type schema:CreativeWork
221 https://www.grid.ac/institutes/grid.4461.7 schema:alternateName Lille 1 University
222 schema:name Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, Amiens, France
223 Université Lille 1, CNRS UMR 8516-LASIR, 59655, Villeneuve d’Ascq, France
224 rdf:type schema:Organization
225 https://www.grid.ac/institutes/grid.462034.7 schema:alternateName Institut Charles Gerhardt
226 schema:name Institut Charles Gerhardt, CNRS UMR 5253, Université Montpellier, Place E. Bataillon, 34095, Montpellier, France
227 Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, Amiens, France
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.463728.c schema:alternateName Laboratoire de Réactivité et Chimie des Solides
230 schema:name Laboratoire de Réactivité et Chimie des Solides, UMR CNRS 7314, 33 Rue Saint Leu, 80039, Amiens, France
231 Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, Amiens, France
232 rdf:type schema:Organization
233 https://www.grid.ac/institutes/grid.494528.6 schema:alternateName Research Network on Electrochemical Energy Storage
234 schema:name Collège de France, Chimie du Solide et Energie, UMR 8260, 11 place Marcelin Berthelot, 75005, Paris, France
235 Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, Amiens, France
236 Sorbonne Universités - UPMC Univ. Paris 06, 4 Place Jussieu, 75005, Paris, France
237 rdf:type schema:Organization
238 https://www.grid.ac/institutes/grid.5284.b schema:alternateName University of Antwerp
239 schema:name Collège de France, Chimie du Solide et Energie, UMR 8260, 11 place Marcelin Berthelot, 75005, Paris, France
240 EMAT, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...