Decadal global temperature variability increases strongly with climate sensitivity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-07-22

AUTHORS

Femke J. M. M. Nijsse, Peter M. Cox, Chris Huntingford, Mark S. Williamson

ABSTRACT

Climate-related risks are dependent not only on the warming trend from GHGs, but also on the variability about the trend. However, assessment of the impacts of climate change tends to focus on the ultimate level of global warming1, only occasionally on the rate of global warming, and rarely on variability about the trend. Here we show that models that are more sensitive to GHGs emissions (that is, higher equilibrium climate sensitivity (ECS)) also have higher temperature variability on timescales of several years to several decades2. Counter-intuitively, high-sensitivity climates, as well as having a higher chance of rapid decadal warming, are also more likely to have had historical ‘hiatus’ periods than lower-sensitivity climates. Cooling or hiatus decades over the historical period, which have been relatively uncommon, are more than twice as likely in a high-ECS world (ECS = 4.5 K) compared with a low-ECS world (ECS = 1.5 K). As ECS also affects the background warming rate under future scenarios with unmitigated anthropogenic forcing, the probability of a hyper-warming decade—over ten times the mean rate of global warming for the twentieth century—is even more sensitive to ECS. More... »

PAGES

598-601

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41558-019-0527-4

DOI

http://dx.doi.org/10.1038/s41558-019-0527-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1118149568


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Science and Management", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.8391.3", 
          "name": [
            "College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nijsse", 
        "givenName": "Femke J. M. M.", 
        "id": "sg:person.013003565412.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013003565412.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.8391.3", 
          "name": [
            "College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cox", 
        "givenName": "Peter M.", 
        "id": "sg:person.01067107161.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067107161.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Ecology and Hydrology, Wallingford, UK", 
          "id": "http://www.grid.ac/institutes/grid.494924.6", 
          "name": [
            "Centre for Ecology and Hydrology, Wallingford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huntingford", 
        "givenName": "Chris", 
        "id": "sg:person.01265557306.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265557306.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.8391.3", 
          "name": [
            "College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Williamson", 
        "givenName": "Mark S.", 
        "id": "sg:person.010677714631.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010677714631.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nclimate3058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004677085", 
          "https://doi.org/10.1038/nclimate3058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature24672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099599514", 
          "https://doi.org/10.1038/nature24672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/344324a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000092146", 
          "https://doi.org/10.1038/344324a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000410102", 
          "https://doi.org/10.1038/nclimate2531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo1836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035863071", 
          "https://doi.org/10.1038/ngeo1836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-018-4113-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101219621", 
          "https://doi.org/10.1007/s00382-018-4113-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043083104", 
          "https://doi.org/10.1038/nclimate1143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature25450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100426955", 
          "https://doi.org/10.1038/nature25450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016927016", 
          "https://doi.org/10.1038/nature12829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature22315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085126215", 
          "https://doi.org/10.1038/nature22315"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-07-22", 
    "datePublishedReg": "2019-07-22", 
    "description": "Climate-related risks are dependent not only on the warming trend from GHGs, but also on the variability about the trend. However, assessment of the impacts of climate change tends to focus on the ultimate level of global warming1, only occasionally on the rate of global warming, and rarely on variability about the trend. Here we show that models that are more sensitive to GHGs emissions (that is, higher equilibrium climate sensitivity (ECS)) also have higher temperature variability on timescales of several years to several decades2. Counter-intuitively, high-sensitivity climates, as well as having a higher chance of rapid decadal warming, are also more likely to have had historical \u2018hiatus\u2019 periods than lower-sensitivity climates. Cooling or hiatus decades over the historical period, which have been relatively uncommon, are more than twice as likely in a high-ECS world (ECS\u2009=\u20094.5\u2009K) compared with a low-ECS world (ECS\u2009=\u20091.5\u2009K). As ECS also affects the background warming rate under future scenarios with unmitigated anthropogenic forcing, the probability of a hyper-warming decade\u2014over ten times the mean rate of global warming for the twentieth century\u2014is even more sensitive to ECS.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41558-019-0527-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4056923", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6860027", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1044959", 
        "issn": [
          "1758-678X", 
          "1758-6798"
        ], 
        "name": "Nature Climate Change", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "temperature variability", 
      "global warming", 
      "global temperature variability", 
      "high temperature variability", 
      "hiatus decades", 
      "anthropogenic forcing", 
      "decadal warming", 
      "climate sensitivity", 
      "warming trend", 
      "climate-related risks", 
      "warming rate", 
      "global warming1", 
      "climate change", 
      "warming", 
      "future scenarios", 
      "historical period", 
      "variability", 
      "climate", 
      "mean rate", 
      "GHGs emission", 
      "forcing", 
      "trends", 
      "hiatus", 
      "timescales", 
      "GHGs", 
      "twentieth century", 
      "period", 
      "ECS", 
      "decades", 
      "century", 
      "scenarios", 
      "emission", 
      "changes", 
      "impact", 
      "world", 
      "rate", 
      "model", 
      "years", 
      "ultimate level", 
      "assessment", 
      "time", 
      "sensitivity", 
      "probability", 
      "levels", 
      "higher chance", 
      "chance", 
      "risk"
    ], 
    "name": "Decadal global temperature variability increases strongly with climate sensitivity", 
    "pagination": "598-601", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1118149568"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41558-019-0527-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41558-019-0527-4", 
      "https://app.dimensions.ai/details/publication/pub.1118149568"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_824.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41558-019-0527-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41558-019-0527-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41558-019-0527-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41558-019-0527-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41558-019-0527-4'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      22 PREDICATES      85 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41558-019-0527-4 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0406
4 anzsrc-for:05
5 anzsrc-for:0502
6 schema:author N82725f76328f4726b07e1fae216a7012
7 schema:citation sg:pub.10.1007/s00382-018-4113-7
8 sg:pub.10.1038/344324a0
9 sg:pub.10.1038/nature12829
10 sg:pub.10.1038/nature22315
11 sg:pub.10.1038/nature24672
12 sg:pub.10.1038/nature25450
13 sg:pub.10.1038/nclimate1143
14 sg:pub.10.1038/nclimate2531
15 sg:pub.10.1038/nclimate3058
16 sg:pub.10.1038/ngeo1836
17 schema:datePublished 2019-07-22
18 schema:datePublishedReg 2019-07-22
19 schema:description Climate-related risks are dependent not only on the warming trend from GHGs, but also on the variability about the trend. However, assessment of the impacts of climate change tends to focus on the ultimate level of global warming1, only occasionally on the rate of global warming, and rarely on variability about the trend. Here we show that models that are more sensitive to GHGs emissions (that is, higher equilibrium climate sensitivity (ECS)) also have higher temperature variability on timescales of several years to several decades2. Counter-intuitively, high-sensitivity climates, as well as having a higher chance of rapid decadal warming, are also more likely to have had historical ‘hiatus’ periods than lower-sensitivity climates. Cooling or hiatus decades over the historical period, which have been relatively uncommon, are more than twice as likely in a high-ECS world (ECS = 4.5 K) compared with a low-ECS world (ECS = 1.5 K). As ECS also affects the background warming rate under future scenarios with unmitigated anthropogenic forcing, the probability of a hyper-warming decade—over ten times the mean rate of global warming for the twentieth century—is even more sensitive to ECS.
20 schema:genre article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N6b9f3f7f80cd45079c0c11d0fd1d1bde
24 Na81d78a757ea4348ad6750f3146f3c2f
25 sg:journal.1044959
26 schema:keywords ECS
27 GHGs
28 GHGs emission
29 anthropogenic forcing
30 assessment
31 century
32 chance
33 changes
34 climate
35 climate change
36 climate sensitivity
37 climate-related risks
38 decadal warming
39 decades
40 emission
41 forcing
42 future scenarios
43 global temperature variability
44 global warming
45 global warming1
46 hiatus
47 hiatus decades
48 high temperature variability
49 higher chance
50 historical period
51 impact
52 levels
53 mean rate
54 model
55 period
56 probability
57 rate
58 risk
59 scenarios
60 sensitivity
61 temperature variability
62 time
63 timescales
64 trends
65 twentieth century
66 ultimate level
67 variability
68 warming
69 warming rate
70 warming trend
71 world
72 years
73 schema:name Decadal global temperature variability increases strongly with climate sensitivity
74 schema:pagination 598-601
75 schema:productId N2523c312e2e1449baacc90e98010397a
76 Ne94721aae618400b8f9f92a76f909aa9
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1118149568
78 https://doi.org/10.1038/s41558-019-0527-4
79 schema:sdDatePublished 2022-05-20T07:36
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N28bf412782734d97a716f4280389cef7
82 schema:url https://doi.org/10.1038/s41558-019-0527-4
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N2523c312e2e1449baacc90e98010397a schema:name dimensions_id
87 schema:value pub.1118149568
88 rdf:type schema:PropertyValue
89 N28bf412782734d97a716f4280389cef7 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N400d4d2989fc445abc2ef42d11c896fe rdf:first sg:person.01265557306.26
92 rdf:rest N4587a052660041c0a75ab557f11072e9
93 N4587a052660041c0a75ab557f11072e9 rdf:first sg:person.010677714631.31
94 rdf:rest rdf:nil
95 N6b9f3f7f80cd45079c0c11d0fd1d1bde schema:volumeNumber 9
96 rdf:type schema:PublicationVolume
97 N82725f76328f4726b07e1fae216a7012 rdf:first sg:person.013003565412.24
98 rdf:rest Ncc66d4eda4db4ae0a1c8dc3e12cf27db
99 Na81d78a757ea4348ad6750f3146f3c2f schema:issueNumber 8
100 rdf:type schema:PublicationIssue
101 Ncc66d4eda4db4ae0a1c8dc3e12cf27db rdf:first sg:person.01067107161.45
102 rdf:rest N400d4d2989fc445abc2ef42d11c896fe
103 Ne94721aae618400b8f9f92a76f909aa9 schema:name doi
104 schema:value 10.1038/s41558-019-0527-4
105 rdf:type schema:PropertyValue
106 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
107 schema:name Earth Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
110 schema:name Atmospheric Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
113 schema:name Physical Geography and Environmental Geoscience
114 rdf:type schema:DefinedTerm
115 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
116 schema:name Environmental Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
119 schema:name Environmental Science and Management
120 rdf:type schema:DefinedTerm
121 sg:grant.4056923 http://pending.schema.org/fundedItem sg:pub.10.1038/s41558-019-0527-4
122 rdf:type schema:MonetaryGrant
123 sg:grant.6860027 http://pending.schema.org/fundedItem sg:pub.10.1038/s41558-019-0527-4
124 rdf:type schema:MonetaryGrant
125 sg:journal.1044959 schema:issn 1758-678X
126 1758-6798
127 schema:name Nature Climate Change
128 schema:publisher Springer Nature
129 rdf:type schema:Periodical
130 sg:person.01067107161.45 schema:affiliation grid-institutes:grid.8391.3
131 schema:familyName Cox
132 schema:givenName Peter M.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067107161.45
134 rdf:type schema:Person
135 sg:person.010677714631.31 schema:affiliation grid-institutes:grid.8391.3
136 schema:familyName Williamson
137 schema:givenName Mark S.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010677714631.31
139 rdf:type schema:Person
140 sg:person.01265557306.26 schema:affiliation grid-institutes:grid.494924.6
141 schema:familyName Huntingford
142 schema:givenName Chris
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265557306.26
144 rdf:type schema:Person
145 sg:person.013003565412.24 schema:affiliation grid-institutes:grid.8391.3
146 schema:familyName Nijsse
147 schema:givenName Femke J. M. M.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013003565412.24
149 rdf:type schema:Person
150 sg:pub.10.1007/s00382-018-4113-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101219621
151 https://doi.org/10.1007/s00382-018-4113-7
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/344324a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000092146
154 https://doi.org/10.1038/344324a0
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nature12829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016927016
157 https://doi.org/10.1038/nature12829
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nature22315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085126215
160 https://doi.org/10.1038/nature22315
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nature24672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099599514
163 https://doi.org/10.1038/nature24672
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nature25450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100426955
166 https://doi.org/10.1038/nature25450
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nclimate1143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043083104
169 https://doi.org/10.1038/nclimate1143
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nclimate2531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000410102
172 https://doi.org/10.1038/nclimate2531
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nclimate3058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004677085
175 https://doi.org/10.1038/nclimate3058
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/ngeo1836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035863071
178 https://doi.org/10.1038/ngeo1836
179 rdf:type schema:CreativeWork
180 grid-institutes:grid.494924.6 schema:alternateName Centre for Ecology and Hydrology, Wallingford, UK
181 schema:name Centre for Ecology and Hydrology, Wallingford, UK
182 rdf:type schema:Organization
183 grid-institutes:grid.8391.3 schema:alternateName College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, UK
184 schema:name College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, UK
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...