Progressing emergent constraints on future climate change View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03-18

AUTHORS

Alex Hall, Peter Cox, Chris Huntingford, Stephen Klein

ABSTRACT

In recent years, an evaluation technique for Earth System Models (ESMs) has arisen—emergent constraints (ECs)—which rely on strong statistical relationships between aspects of current climate and future change across an ESM ensemble. Combining the EC relationship with observations could reduce uncertainty surrounding future change. Here, we articulate a framework to assess ECs, and provide indicators whereby a proposed EC may move from a strong statistical relationship to confirmation. The primary indicators are verified mechanisms and out-of-sample testing. Confirmed ECs have the potential to improve ESMs by focusing attention on the variables most relevant to climate projections. Looking forward, there may be undiscovered ECs for extremes and teleconnections, and ECs may help identify climate system tipping points. More... »

PAGES

269-278

References to SciGraph publications

  • 2008-06. Relation between temperature sensitivity to doubled carbon dioxide and the distribution of clouds in current climate models in IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS
  • 2017-04-08. Variability in modeled cloud feedback tied to differences in the climatological spatial pattern of clouds in CLIMATE DYNAMICS
  • 2017-09-18. Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall in NATURE CLIMATE CHANGE
  • 2004-04-27. Amazonian forest dieback under climate-carbon cycle projections for the 21st century in THEORETICAL AND APPLIED CLIMATOLOGY
  • 2015-12-09. An observational radiative constraint on hydrologic cycle intensification in NATURE
  • 2013-05-01. On the persistent spread in snow-albedo feedback in CLIMATE DYNAMICS
  • 2015-10-05. Shallowness of tropical low clouds as a predictor of climate models’ response to warming in CLIMATE DYNAMICS
  • 2017-10-12. Causes of model dry and warm bias over central U.S. and impact on climate projections in NATURE COMMUNICATIONS
  • 2018-01-18. Emergent constraint on equilibrium climate sensitivity from global temperature variability in NATURE
  • 2014-01-01. Spread in model climate sensitivity traced to atmospheric convective mixing in NATURE
  • 2013-02-06. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability in NATURE
  • 2017-04-10. Emergent constraints on projections of declining primary production in the tropical oceans in NATURE CLIMATE CHANGE
  • 2017-04-10. An observation-based constraint on permafrost loss as a function of global warming in NATURE CLIMATE CHANGE
  • 2012-09-16. Sensitivity of tropical precipitation extremes to climate change in NATURE GEOSCIENCE
  • 2016-09-28. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2 in NATURE
  • 2009-03-15. September sea-ice cover in the Arctic Ocean projected to vanish by 2100 in NATURE GEOSCIENCE
  • 2000-11. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model in NATURE
  • 2009-09-03. Early-warning signals for critical transitions in NATURE
  • 2013-05-29. Early warning signals of simulated Amazon rainforest dieback in THEORETICAL ECOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41558-019-0436-6

    DOI

    http://dx.doi.org/10.1038/s41558-019-0436-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112855003


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Atmospheric and Oceanic Sciences, University of California \u2014 Los Angeles, Los Angeles, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.19006.3e", 
              "name": [
                "Department of Atmospheric and Oceanic Sciences, University of California \u2014 Los Angeles, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hall", 
            "givenName": "Alex", 
            "id": "sg:person.07742313157.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07742313157.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.8391.3", 
              "name": [
                "College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cox", 
            "givenName": "Peter", 
            "id": "sg:person.01067107161.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067107161.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centre for Ecology and Hydrology, Wallingford, UK", 
              "id": "http://www.grid.ac/institutes/grid.494924.6", 
              "name": [
                "Centre for Ecology and Hydrology, Wallingford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huntingford", 
            "givenName": "Chris", 
            "id": "sg:person.01265557306.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265557306.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "PCMDI, Lawrence Livermore National Laboratory, Livermore, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.250008.f", 
              "name": [
                "PCMDI, Lawrence Livermore National Laboratory, Livermore, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Klein", 
            "givenName": "Stephen", 
            "id": "sg:person.01035666162.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035666162.75"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ngeo467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016344165", 
              "https://doi.org/10.1038/ngeo467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate3265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084759297", 
              "https://doi.org/10.1038/nclimate3265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate3387", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091828818", 
              "https://doi.org/10.1038/nclimate3387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019367407", 
              "https://doi.org/10.1038/nature08227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature25450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100426955", 
              "https://doi.org/10.1038/nature25450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature19772", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008663939", 
              "https://doi.org/10.1038/nature19772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12080-013-0191-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002422215", 
              "https://doi.org/10.1007/s12080-013-0191-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-01040-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092119339", 
              "https://doi.org/10.1038/s41467-017-01040-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate3262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084756907", 
              "https://doi.org/10.1038/nclimate3262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature15770", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047355547", 
              "https://doi.org/10.1038/nature15770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-015-2846-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036271246", 
              "https://doi.org/10.1007/s00382-015-2846-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35041539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011328414", 
              "https://doi.org/10.1038/35041539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00704-004-0049-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033796123", 
              "https://doi.org/10.1007/s00704-004-0049-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027512103", 
              "https://doi.org/10.1038/nature11882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-017-3673-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084517711", 
              "https://doi.org/10.1007/s00382-017-3673-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-013-1774-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003756481", 
              "https://doi.org/10.1007/s00382-013-1774-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo1568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035983917", 
              "https://doi.org/10.1038/ngeo1568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016927016", 
              "https://doi.org/10.1038/nature12829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0001433808030043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038001991", 
              "https://doi.org/10.1134/s0001433808030043"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-18", 
        "datePublishedReg": "2019-03-18", 
        "description": "In recent years, an evaluation technique for Earth System Models (ESMs) has arisen\u2014emergent constraints (ECs)\u2014which rely on strong statistical relationships between aspects of current climate and future change across an ESM ensemble. Combining the EC relationship with observations could reduce uncertainty surrounding future change. Here, we articulate a framework to assess ECs, and provide indicators whereby a proposed EC may move from a strong statistical relationship to confirmation. The primary indicators are verified mechanisms and out-of-sample testing. Confirmed ECs have the potential to improve ESMs by focusing attention on the variables most relevant to climate projections. Looking forward, there may be undiscovered ECs for extremes and teleconnections, and ECs may help identify climate system tipping points.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41558-019-0436-6", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6860027", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4056923", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4893303", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1044959", 
            "issn": [
              "1758-678X", 
              "1758-6798"
            ], 
            "name": "Nature Climate Change", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "keywords": [
          "Earth System Model", 
          "future changes", 
          "strong statistical relationship", 
          "future climate change", 
          "statistical relationship", 
          "emergent constraints", 
          "current climate", 
          "climate change", 
          "verified mechanism", 
          "tipping point", 
          "system model", 
          "teleconnections", 
          "EC relationship", 
          "climate", 
          "extremes", 
          "EC", 
          "changes", 
          "primary indicator", 
          "ensemble", 
          "constraints", 
          "uncertainty", 
          "indicators", 
          "projections", 
          "relationship", 
          "sample testing", 
          "model", 
          "recent years", 
          "years", 
          "evaluation techniques", 
          "potential", 
          "variables", 
          "framework", 
          "point", 
          "mechanism", 
          "technique", 
          "aspects", 
          "confirmation", 
          "attention", 
          "testing", 
          "observations"
        ], 
        "name": "Progressing emergent constraints on future climate change", 
        "pagination": "269-278", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112855003"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41558-019-0436-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41558-019-0436-6", 
          "https://app.dimensions.ai/details/publication/pub.1112855003"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_796.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41558-019-0436-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41558-019-0436-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41558-019-0436-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41558-019-0436-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41558-019-0436-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    210 TRIPLES      22 PREDICATES      84 URIs      57 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41558-019-0436-6 schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 schema:author Nfaaf1e3d51ef468f8b92ab4da234a195
    4 schema:citation sg:pub.10.1007/s00382-013-1774-0
    5 sg:pub.10.1007/s00382-015-2846-0
    6 sg:pub.10.1007/s00382-017-3673-2
    7 sg:pub.10.1007/s00704-004-0049-4
    8 sg:pub.10.1007/s12080-013-0191-7
    9 sg:pub.10.1038/35041539
    10 sg:pub.10.1038/nature08227
    11 sg:pub.10.1038/nature11882
    12 sg:pub.10.1038/nature12829
    13 sg:pub.10.1038/nature15770
    14 sg:pub.10.1038/nature19772
    15 sg:pub.10.1038/nature25450
    16 sg:pub.10.1038/nclimate3262
    17 sg:pub.10.1038/nclimate3265
    18 sg:pub.10.1038/nclimate3387
    19 sg:pub.10.1038/ngeo1568
    20 sg:pub.10.1038/ngeo467
    21 sg:pub.10.1038/s41467-017-01040-2
    22 sg:pub.10.1134/s0001433808030043
    23 schema:datePublished 2019-03-18
    24 schema:datePublishedReg 2019-03-18
    25 schema:description In recent years, an evaluation technique for Earth System Models (ESMs) has arisen—emergent constraints (ECs)—which rely on strong statistical relationships between aspects of current climate and future change across an ESM ensemble. Combining the EC relationship with observations could reduce uncertainty surrounding future change. Here, we articulate a framework to assess ECs, and provide indicators whereby a proposed EC may move from a strong statistical relationship to confirmation. The primary indicators are verified mechanisms and out-of-sample testing. Confirmed ECs have the potential to improve ESMs by focusing attention on the variables most relevant to climate projections. Looking forward, there may be undiscovered ECs for extremes and teleconnections, and ECs may help identify climate system tipping points.
    26 schema:genre article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree true
    29 schema:isPartOf Na826039c82a54b1a898946564fb97432
    30 Ndbe6518e76ad42edb93195bc8c2dd85d
    31 sg:journal.1044959
    32 schema:keywords EC
    33 EC relationship
    34 Earth System Model
    35 aspects
    36 attention
    37 changes
    38 climate
    39 climate change
    40 confirmation
    41 constraints
    42 current climate
    43 emergent constraints
    44 ensemble
    45 evaluation techniques
    46 extremes
    47 framework
    48 future changes
    49 future climate change
    50 indicators
    51 mechanism
    52 model
    53 observations
    54 point
    55 potential
    56 primary indicator
    57 projections
    58 recent years
    59 relationship
    60 sample testing
    61 statistical relationship
    62 strong statistical relationship
    63 system model
    64 technique
    65 teleconnections
    66 testing
    67 tipping point
    68 uncertainty
    69 variables
    70 verified mechanism
    71 years
    72 schema:name Progressing emergent constraints on future climate change
    73 schema:pagination 269-278
    74 schema:productId Nc549bafff5f74e539f3cc3f4d877db4d
    75 Nea6dac3221504a5886c75ac7211cb7c1
    76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112855003
    77 https://doi.org/10.1038/s41558-019-0436-6
    78 schema:sdDatePublished 2022-05-10T10:24
    79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    80 schema:sdPublisher N413c859821464b46a2a94960c8dfa28e
    81 schema:url https://doi.org/10.1038/s41558-019-0436-6
    82 sgo:license sg:explorer/license/
    83 sgo:sdDataset articles
    84 rdf:type schema:ScholarlyArticle
    85 N413c859821464b46a2a94960c8dfa28e schema:name Springer Nature - SN SciGraph project
    86 rdf:type schema:Organization
    87 Na826039c82a54b1a898946564fb97432 schema:issueNumber 4
    88 rdf:type schema:PublicationIssue
    89 Nba76a4311b5041cab86e899b6f9e35ff rdf:first sg:person.01035666162.75
    90 rdf:rest rdf:nil
    91 Nc549bafff5f74e539f3cc3f4d877db4d schema:name dimensions_id
    92 schema:value pub.1112855003
    93 rdf:type schema:PropertyValue
    94 Ndbe6518e76ad42edb93195bc8c2dd85d schema:volumeNumber 9
    95 rdf:type schema:PublicationVolume
    96 Nde3fb7ea22264bc3b7052b896fcc687d rdf:first sg:person.01067107161.45
    97 rdf:rest Necd93ee511a847379a7605841b0b2fd9
    98 Nea6dac3221504a5886c75ac7211cb7c1 schema:name doi
    99 schema:value 10.1038/s41558-019-0436-6
    100 rdf:type schema:PropertyValue
    101 Necd93ee511a847379a7605841b0b2fd9 rdf:first sg:person.01265557306.26
    102 rdf:rest Nba76a4311b5041cab86e899b6f9e35ff
    103 Nfaaf1e3d51ef468f8b92ab4da234a195 rdf:first sg:person.07742313157.15
    104 rdf:rest Nde3fb7ea22264bc3b7052b896fcc687d
    105 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Earth Sciences
    107 rdf:type schema:DefinedTerm
    108 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Atmospheric Sciences
    110 rdf:type schema:DefinedTerm
    111 sg:grant.4056923 http://pending.schema.org/fundedItem sg:pub.10.1038/s41558-019-0436-6
    112 rdf:type schema:MonetaryGrant
    113 sg:grant.4893303 http://pending.schema.org/fundedItem sg:pub.10.1038/s41558-019-0436-6
    114 rdf:type schema:MonetaryGrant
    115 sg:grant.6860027 http://pending.schema.org/fundedItem sg:pub.10.1038/s41558-019-0436-6
    116 rdf:type schema:MonetaryGrant
    117 sg:journal.1044959 schema:issn 1758-678X
    118 1758-6798
    119 schema:name Nature Climate Change
    120 schema:publisher Springer Nature
    121 rdf:type schema:Periodical
    122 sg:person.01035666162.75 schema:affiliation grid-institutes:grid.250008.f
    123 schema:familyName Klein
    124 schema:givenName Stephen
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035666162.75
    126 rdf:type schema:Person
    127 sg:person.01067107161.45 schema:affiliation grid-institutes:grid.8391.3
    128 schema:familyName Cox
    129 schema:givenName Peter
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067107161.45
    131 rdf:type schema:Person
    132 sg:person.01265557306.26 schema:affiliation grid-institutes:grid.494924.6
    133 schema:familyName Huntingford
    134 schema:givenName Chris
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265557306.26
    136 rdf:type schema:Person
    137 sg:person.07742313157.15 schema:affiliation grid-institutes:grid.19006.3e
    138 schema:familyName Hall
    139 schema:givenName Alex
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07742313157.15
    141 rdf:type schema:Person
    142 sg:pub.10.1007/s00382-013-1774-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003756481
    143 https://doi.org/10.1007/s00382-013-1774-0
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/s00382-015-2846-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036271246
    146 https://doi.org/10.1007/s00382-015-2846-0
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s00382-017-3673-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084517711
    149 https://doi.org/10.1007/s00382-017-3673-2
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s00704-004-0049-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033796123
    152 https://doi.org/10.1007/s00704-004-0049-4
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s12080-013-0191-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002422215
    155 https://doi.org/10.1007/s12080-013-0191-7
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1038/35041539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011328414
    158 https://doi.org/10.1038/35041539
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1038/nature08227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019367407
    161 https://doi.org/10.1038/nature08227
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1038/nature11882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027512103
    164 https://doi.org/10.1038/nature11882
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1038/nature12829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016927016
    167 https://doi.org/10.1038/nature12829
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1038/nature15770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047355547
    170 https://doi.org/10.1038/nature15770
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/nature19772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008663939
    173 https://doi.org/10.1038/nature19772
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/nature25450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100426955
    176 https://doi.org/10.1038/nature25450
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/nclimate3262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084756907
    179 https://doi.org/10.1038/nclimate3262
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/nclimate3265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084759297
    182 https://doi.org/10.1038/nclimate3265
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/nclimate3387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091828818
    185 https://doi.org/10.1038/nclimate3387
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/ngeo1568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035983917
    188 https://doi.org/10.1038/ngeo1568
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/ngeo467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016344165
    191 https://doi.org/10.1038/ngeo467
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/s41467-017-01040-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092119339
    194 https://doi.org/10.1038/s41467-017-01040-2
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1134/s0001433808030043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038001991
    197 https://doi.org/10.1134/s0001433808030043
    198 rdf:type schema:CreativeWork
    199 grid-institutes:grid.19006.3e schema:alternateName Department of Atmospheric and Oceanic Sciences, University of California — Los Angeles, Los Angeles, CA, USA
    200 schema:name Department of Atmospheric and Oceanic Sciences, University of California — Los Angeles, Los Angeles, CA, USA
    201 rdf:type schema:Organization
    202 grid-institutes:grid.250008.f schema:alternateName PCMDI, Lawrence Livermore National Laboratory, Livermore, CA, USA
    203 schema:name PCMDI, Lawrence Livermore National Laboratory, Livermore, CA, USA
    204 rdf:type schema:Organization
    205 grid-institutes:grid.494924.6 schema:alternateName Centre for Ecology and Hydrology, Wallingford, UK
    206 schema:name Centre for Ecology and Hydrology, Wallingford, UK
    207 rdf:type schema:Organization
    208 grid-institutes:grid.8391.3 schema:alternateName College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
    209 schema:name College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
    210 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...