Applying big data beyond small problems in climate research View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02-25

AUTHORS

Benedikt Knüsel, Marius Zumwald, Christoph Baumberger, Gertrude Hirsch Hadorn, Erich M. Fischer, David N. Bresch, Reto Knutti

ABSTRACT

Commercial success of big data has led to speculation that big-data-like reasoning could partly replace theory-based approaches in science. Big data typically has been applied to ‘small problems’, which are well-structured cases characterized by repeated evaluation of predictions. Here, we show that in climate research, intermediate categories exist between classical domain science and big data, and that big-data elements have also been applied without the possibility of repeated evaluation. Big-data elements can be useful for climate research beyond small problems if combined with more traditional approaches based on domain-specific knowledge. The biggest potential for big-data elements, we argue, lies in socioeconomic climate research. More... »

PAGES

196-202

References to SciGraph publications

  • 2013-11-05. Quantifying the Digital Traces of Hurricane Sandy on Flickr in SCIENTIFIC REPORTS
  • 2009-08-23. Temporal downscaling: a comparison between artificial neural network and autocorrelation techniques over the Amazon Basin in present and future climate change scenarios in THEORETICAL AND APPLIED CLIMATOLOGY
  • 2016-03-08. Changes in population susceptibility to heat and cold over time: assessing adaptation to climate change in ENVIRONMENTAL HEALTH
  • 2007. Artificial General Intelligence in NONE
  • 2015-05-27. Deep learning in NATURE
  • 2016-08-01. Detecting climate adaptation with mobile network data in Bangladesh: anomalies in communication, mobility and consumption patterns during cyclone Mahasen in CLIMATIC CHANGE
  • 2015-06-18. The future of climate modeling in CLIMATIC CHANGE
  • 2017. Berechenbarkeit der Welt?, Philosophie und Wissenschaft im Zeitalter von Big Data in NONE
  • 2016-03-09. Plant Phenotyping using Probabilistic Topic Models: Uncovering the Hyperspectral Language of Plants in SCIENTIFIC REPORTS
  • 2015-05-10. Monthly prediction of air temperature in Australia and New Zealand with machine learning algorithms in THEORETICAL AND APPLIED CLIMATOLOGY
  • 2017-03-18. Using second-order approximation to incorporate GCM uncertainty in climate change impact assessments in CLIMATIC CHANGE
  • 2014-11-26. Climate-smart agriculture for food security in NATURE CLIMATE CHANGE
  • 2017-05-23. Introduction: Ten Theses on Big Data and Computability in BERECHENBARKEIT DER WELT?
  • 2013-04-13. Enhancing understanding and improving prediction of severe weather through spatiotemporal relational learning in MACHINE LEARNING
  • 2015-06-19. The Causal Nature of Modeling with Big Data in PHILOSOPHY & TECHNOLOGY
  • 2014-12-13. A bitter cup: climate change profile of global production of Arabica and Robusta coffee in CLIMATIC CHANGE
  • 2012-06-20. Application of artificial neural networks to rainfall forecasting in Queensland, Australia in ADVANCES IN ATMOSPHERIC SCIENCES
  • 2017-02-18. Identification of Critical Flood Prone Areas in Data-Scarce and Ungauged Regions: A Comparison of Three Data Mining Models in WATER RESOURCES MANAGEMENT
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41558-019-0404-1

    DOI

    http://dx.doi.org/10.1038/s41558-019-0404-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112363277


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Science and Management", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Institute for Environmental Decisions, ETH Zurich, Switzerland", 
                "Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kn\u00fcsel", 
            "givenName": "Benedikt", 
            "id": "sg:person.010650531433.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010650531433.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Institute for Environmental Decisions, ETH Zurich, Switzerland", 
                "Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zumwald", 
            "givenName": "Marius", 
            "id": "sg:person.012243472433.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012243472433.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Environmental Decisions, ETH Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Institute for Environmental Decisions, ETH Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Baumberger", 
            "givenName": "Christoph", 
            "id": "sg:person.013651566207.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013651566207.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Environmental Decisions, ETH Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Institute for Environmental Decisions, ETH Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hirsch Hadorn", 
            "givenName": "Gertrude", 
            "id": "sg:person.011550732443.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011550732443.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fischer", 
            "givenName": "Erich M.", 
            "id": "sg:person.016571603451.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016571603451.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Federal Office of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.469494.2", 
              "name": [
                "Institute for Environmental Decisions, ETH Zurich, Switzerland", 
                "Federal Office of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bresch", 
            "givenName": "David N.", 
            "id": "sg:person.015360577134.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015360577134.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Knutti", 
            "givenName": "Reto", 
            "id": "sg:person.0725114521.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725114521.94"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nclimate2437", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009365408", 
              "https://doi.org/10.1038/nclimate2437"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep03141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025561999", 
              "https://doi.org/10.1038/srep03141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00376-012-1259-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028391329", 
              "https://doi.org/10.1007/s00376-012-1259-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-013-5343-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009040336", 
              "https://doi.org/10.1007/s10994-013-5343-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12940-016-0102-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013157730", 
              "https://doi.org/10.1186/s12940-016-0102-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00704-009-0193-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007879444", 
              "https://doi.org/10.1007/s00704-009-0193-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-014-1306-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030232077", 
              "https://doi.org/10.1007/s10584-014-1306-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-017-1589-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083905399", 
              "https://doi.org/10.1007/s11269-017-1589-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00704-015-1480-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021748153", 
              "https://doi.org/10.1007/s00704-015-1480-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-658-12153-2_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085560577", 
              "https://doi.org/10.1007/978-3-658-12153-2_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-68677-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029883097", 
              "https://doi.org/10.1007/978-3-540-68677-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-017-1944-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084025657", 
              "https://doi.org/10.1007/s10584-017-1944-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13347-015-0202-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034060592", 
              "https://doi.org/10.1007/s13347-015-0202-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-015-1435-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007976645", 
              "https://doi.org/10.1007/s10584-015-1435-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep22482", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047930706", 
              "https://doi.org/10.1038/srep22482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-658-12153-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085565794", 
              "https://doi.org/10.1007/978-3-658-12153-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-016-1753-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038714277", 
              "https://doi.org/10.1007/s10584-016-1753-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010020120", 
              "https://doi.org/10.1038/nature14539"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-25", 
        "datePublishedReg": "2019-02-25", 
        "description": "Commercial success of big data has led to speculation that big-data-like reasoning could partly replace theory-based approaches in science. Big data typically has been applied to \u2018small problems\u2019, which are well-structured cases characterized by repeated evaluation of predictions. Here, we show that in climate research, intermediate categories exist between classical domain science and big data, and that big-data elements have also been applied without the possibility of repeated evaluation. Big-data elements can be useful for climate research beyond small problems if combined with more traditional approaches based on domain-specific knowledge. The biggest potential for big-data elements, we argue, lies in socioeconomic climate research.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41558-019-0404-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6805076", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1044959", 
            "issn": [
              "1758-678X", 
              "1758-6798"
            ], 
            "name": "Nature Climate Change", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "keywords": [
          "big data elements", 
          "big data", 
          "small problems", 
          "domain-specific knowledge", 
          "domain science", 
          "traditional approaches", 
          "big potential", 
          "theory-based approach", 
          "climate research", 
          "reasoning", 
          "commercial success", 
          "data", 
          "research", 
          "evaluation of predictions", 
          "science", 
          "evaluation", 
          "knowledge", 
          "elements", 
          "prediction", 
          "success", 
          "categories", 
          "possibility", 
          "cases", 
          "potential", 
          "speculation", 
          "intermediate category", 
          "problem", 
          "approach"
        ], 
        "name": "Applying big data beyond small problems in climate research", 
        "pagination": "196-202", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112363277"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41558-019-0404-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41558-019-0404-1", 
          "https://app.dimensions.ai/details/publication/pub.1112363277"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:26", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_820.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41558-019-0404-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41558-019-0404-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41558-019-0404-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41558-019-0404-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41558-019-0404-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    220 TRIPLES      22 PREDICATES      74 URIs      45 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41558-019-0404-1 schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 anzsrc-for:0406
    4 anzsrc-for:05
    5 anzsrc-for:0502
    6 schema:author Na895741c09c24b1bb3d1d28422c994be
    7 schema:citation sg:pub.10.1007/978-3-540-68677-4
    8 sg:pub.10.1007/978-3-658-12153-2
    9 sg:pub.10.1007/978-3-658-12153-2_2
    10 sg:pub.10.1007/s00376-012-1259-9
    11 sg:pub.10.1007/s00704-009-0193-y
    12 sg:pub.10.1007/s00704-015-1480-4
    13 sg:pub.10.1007/s10584-014-1306-x
    14 sg:pub.10.1007/s10584-015-1435-x
    15 sg:pub.10.1007/s10584-016-1753-7
    16 sg:pub.10.1007/s10584-017-1944-x
    17 sg:pub.10.1007/s10994-013-5343-x
    18 sg:pub.10.1007/s11269-017-1589-6
    19 sg:pub.10.1007/s13347-015-0202-2
    20 sg:pub.10.1038/nature14539
    21 sg:pub.10.1038/nclimate2437
    22 sg:pub.10.1038/srep03141
    23 sg:pub.10.1038/srep22482
    24 sg:pub.10.1186/s12940-016-0102-7
    25 schema:datePublished 2019-02-25
    26 schema:datePublishedReg 2019-02-25
    27 schema:description Commercial success of big data has led to speculation that big-data-like reasoning could partly replace theory-based approaches in science. Big data typically has been applied to ‘small problems’, which are well-structured cases characterized by repeated evaluation of predictions. Here, we show that in climate research, intermediate categories exist between classical domain science and big data, and that big-data elements have also been applied without the possibility of repeated evaluation. Big-data elements can be useful for climate research beyond small problems if combined with more traditional approaches based on domain-specific knowledge. The biggest potential for big-data elements, we argue, lies in socioeconomic climate research.
    28 schema:genre article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree true
    31 schema:isPartOf N6bbc440eabe841e8bdb721106d8ad9d2
    32 Ne7e2262893ad409d8d7f0eb26f286041
    33 sg:journal.1044959
    34 schema:keywords approach
    35 big data
    36 big data elements
    37 big potential
    38 cases
    39 categories
    40 climate research
    41 commercial success
    42 data
    43 domain science
    44 domain-specific knowledge
    45 elements
    46 evaluation
    47 evaluation of predictions
    48 intermediate category
    49 knowledge
    50 possibility
    51 potential
    52 prediction
    53 problem
    54 reasoning
    55 research
    56 science
    57 small problems
    58 speculation
    59 success
    60 theory-based approach
    61 traditional approaches
    62 schema:name Applying big data beyond small problems in climate research
    63 schema:pagination 196-202
    64 schema:productId N4304198f3fac48fdbb6ef80ea5862af6
    65 N4fbba785dbda49a2bea2b73274078fce
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112363277
    67 https://doi.org/10.1038/s41558-019-0404-1
    68 schema:sdDatePublished 2022-05-10T10:26
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher Nd5dc14f0565d4dd08fad03658000d677
    71 schema:url https://doi.org/10.1038/s41558-019-0404-1
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N0d33ada1e0ed4069b30faedd0a07f1e7 rdf:first sg:person.016571603451.04
    76 rdf:rest N73f38d915cee4969a75a77e6131ece33
    77 N3597aec7a51c41e0b2e870aa5068d8d2 rdf:first sg:person.011550732443.40
    78 rdf:rest N0d33ada1e0ed4069b30faedd0a07f1e7
    79 N4304198f3fac48fdbb6ef80ea5862af6 schema:name dimensions_id
    80 schema:value pub.1112363277
    81 rdf:type schema:PropertyValue
    82 N4fbba785dbda49a2bea2b73274078fce schema:name doi
    83 schema:value 10.1038/s41558-019-0404-1
    84 rdf:type schema:PropertyValue
    85 N61584d0ab954480aa955f710337e08bd rdf:first sg:person.013651566207.47
    86 rdf:rest N3597aec7a51c41e0b2e870aa5068d8d2
    87 N6bbc440eabe841e8bdb721106d8ad9d2 schema:volumeNumber 9
    88 rdf:type schema:PublicationVolume
    89 N73f38d915cee4969a75a77e6131ece33 rdf:first sg:person.015360577134.85
    90 rdf:rest N87edc8665c3743138a1642757f671981
    91 N87edc8665c3743138a1642757f671981 rdf:first sg:person.0725114521.94
    92 rdf:rest rdf:nil
    93 Na895741c09c24b1bb3d1d28422c994be rdf:first sg:person.010650531433.43
    94 rdf:rest Nfafe18fb0e5b46cc9b7f2f3967892658
    95 Nd5dc14f0565d4dd08fad03658000d677 schema:name Springer Nature - SN SciGraph project
    96 rdf:type schema:Organization
    97 Ne7e2262893ad409d8d7f0eb26f286041 schema:issueNumber 3
    98 rdf:type schema:PublicationIssue
    99 Nfafe18fb0e5b46cc9b7f2f3967892658 rdf:first sg:person.012243472433.66
    100 rdf:rest N61584d0ab954480aa955f710337e08bd
    101 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Earth Sciences
    103 rdf:type schema:DefinedTerm
    104 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Atmospheric Sciences
    106 rdf:type schema:DefinedTerm
    107 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Physical Geography and Environmental Geoscience
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Environmental Sciences
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Environmental Science and Management
    115 rdf:type schema:DefinedTerm
    116 sg:grant.6805076 http://pending.schema.org/fundedItem sg:pub.10.1038/s41558-019-0404-1
    117 rdf:type schema:MonetaryGrant
    118 sg:journal.1044959 schema:issn 1758-678X
    119 1758-6798
    120 schema:name Nature Climate Change
    121 schema:publisher Springer Nature
    122 rdf:type schema:Periodical
    123 sg:person.010650531433.43 schema:affiliation grid-institutes:grid.5801.c
    124 schema:familyName Knüsel
    125 schema:givenName Benedikt
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010650531433.43
    127 rdf:type schema:Person
    128 sg:person.011550732443.40 schema:affiliation grid-institutes:grid.5801.c
    129 schema:familyName Hirsch Hadorn
    130 schema:givenName Gertrude
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011550732443.40
    132 rdf:type schema:Person
    133 sg:person.012243472433.66 schema:affiliation grid-institutes:grid.5801.c
    134 schema:familyName Zumwald
    135 schema:givenName Marius
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012243472433.66
    137 rdf:type schema:Person
    138 sg:person.013651566207.47 schema:affiliation grid-institutes:grid.5801.c
    139 schema:familyName Baumberger
    140 schema:givenName Christoph
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013651566207.47
    142 rdf:type schema:Person
    143 sg:person.015360577134.85 schema:affiliation grid-institutes:grid.469494.2
    144 schema:familyName Bresch
    145 schema:givenName David N.
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015360577134.85
    147 rdf:type schema:Person
    148 sg:person.016571603451.04 schema:affiliation grid-institutes:grid.5801.c
    149 schema:familyName Fischer
    150 schema:givenName Erich M.
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016571603451.04
    152 rdf:type schema:Person
    153 sg:person.0725114521.94 schema:affiliation grid-institutes:grid.5801.c
    154 schema:familyName Knutti
    155 schema:givenName Reto
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725114521.94
    157 rdf:type schema:Person
    158 sg:pub.10.1007/978-3-540-68677-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029883097
    159 https://doi.org/10.1007/978-3-540-68677-4
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/978-3-658-12153-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085565794
    162 https://doi.org/10.1007/978-3-658-12153-2
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/978-3-658-12153-2_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085560577
    165 https://doi.org/10.1007/978-3-658-12153-2_2
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s00376-012-1259-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028391329
    168 https://doi.org/10.1007/s00376-012-1259-9
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s00704-009-0193-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007879444
    171 https://doi.org/10.1007/s00704-009-0193-y
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s00704-015-1480-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021748153
    174 https://doi.org/10.1007/s00704-015-1480-4
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s10584-014-1306-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030232077
    177 https://doi.org/10.1007/s10584-014-1306-x
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s10584-015-1435-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007976645
    180 https://doi.org/10.1007/s10584-015-1435-x
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/s10584-016-1753-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038714277
    183 https://doi.org/10.1007/s10584-016-1753-7
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s10584-017-1944-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1084025657
    186 https://doi.org/10.1007/s10584-017-1944-x
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/s10994-013-5343-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009040336
    189 https://doi.org/10.1007/s10994-013-5343-x
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s11269-017-1589-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083905399
    192 https://doi.org/10.1007/s11269-017-1589-6
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s13347-015-0202-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034060592
    195 https://doi.org/10.1007/s13347-015-0202-2
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nature14539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020120
    198 https://doi.org/10.1038/nature14539
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nclimate2437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009365408
    201 https://doi.org/10.1038/nclimate2437
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/srep03141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025561999
    204 https://doi.org/10.1038/srep03141
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/srep22482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047930706
    207 https://doi.org/10.1038/srep22482
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1186/s12940-016-0102-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013157730
    210 https://doi.org/10.1186/s12940-016-0102-7
    211 rdf:type schema:CreativeWork
    212 grid-institutes:grid.469494.2 schema:alternateName Federal Office of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland
    213 schema:name Federal Office of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland
    214 Institute for Environmental Decisions, ETH Zurich, Switzerland
    215 rdf:type schema:Organization
    216 grid-institutes:grid.5801.c schema:alternateName Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland
    217 Institute for Environmental Decisions, ETH Zurich, Switzerland
    218 schema:name Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland
    219 Institute for Environmental Decisions, ETH Zurich, Switzerland
    220 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...