Ontology type: schema:ScholarlyArticle Open Access: True
2019-02-25
AUTHORSBenedikt Knüsel, Marius Zumwald, Christoph Baumberger, Gertrude Hirsch Hadorn, Erich M. Fischer, David N. Bresch, Reto Knutti
ABSTRACTCommercial success of big data has led to speculation that big-data-like reasoning could partly replace theory-based approaches in science. Big data typically has been applied to ‘small problems’, which are well-structured cases characterized by repeated evaluation of predictions. Here, we show that in climate research, intermediate categories exist between classical domain science and big data, and that big-data elements have also been applied without the possibility of repeated evaluation. Big-data elements can be useful for climate research beyond small problems if combined with more traditional approaches based on domain-specific knowledge. The biggest potential for big-data elements, we argue, lies in socioeconomic climate research. More... »
PAGES196-202
http://scigraph.springernature.com/pub.10.1038/s41558-019-0404-1
DOIhttp://dx.doi.org/10.1038/s41558-019-0404-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1112363277
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Environmental Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atmospheric Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Geography and Environmental Geoscience",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Environmental Science and Management",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland",
"id": "http://www.grid.ac/institutes/grid.5801.c",
"name": [
"Institute for Environmental Decisions, ETH Zurich, Switzerland",
"Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland"
],
"type": "Organization"
},
"familyName": "Kn\u00fcsel",
"givenName": "Benedikt",
"id": "sg:person.010650531433.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010650531433.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland",
"id": "http://www.grid.ac/institutes/grid.5801.c",
"name": [
"Institute for Environmental Decisions, ETH Zurich, Switzerland",
"Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland"
],
"type": "Organization"
},
"familyName": "Zumwald",
"givenName": "Marius",
"id": "sg:person.012243472433.66",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012243472433.66"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Environmental Decisions, ETH Zurich, Switzerland",
"id": "http://www.grid.ac/institutes/grid.5801.c",
"name": [
"Institute for Environmental Decisions, ETH Zurich, Switzerland"
],
"type": "Organization"
},
"familyName": "Baumberger",
"givenName": "Christoph",
"id": "sg:person.013651566207.47",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013651566207.47"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Environmental Decisions, ETH Zurich, Switzerland",
"id": "http://www.grid.ac/institutes/grid.5801.c",
"name": [
"Institute for Environmental Decisions, ETH Zurich, Switzerland"
],
"type": "Organization"
},
"familyName": "Hirsch Hadorn",
"givenName": "Gertrude",
"id": "sg:person.011550732443.40",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011550732443.40"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland",
"id": "http://www.grid.ac/institutes/grid.5801.c",
"name": [
"Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland"
],
"type": "Organization"
},
"familyName": "Fischer",
"givenName": "Erich M.",
"id": "sg:person.016571603451.04",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016571603451.04"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Federal Office of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland",
"id": "http://www.grid.ac/institutes/grid.469494.2",
"name": [
"Institute for Environmental Decisions, ETH Zurich, Switzerland",
"Federal Office of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland"
],
"type": "Organization"
},
"familyName": "Bresch",
"givenName": "David N.",
"id": "sg:person.015360577134.85",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015360577134.85"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland",
"id": "http://www.grid.ac/institutes/grid.5801.c",
"name": [
"Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland"
],
"type": "Organization"
},
"familyName": "Knutti",
"givenName": "Reto",
"id": "sg:person.0725114521.94",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725114521.94"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/nclimate2437",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009365408",
"https://doi.org/10.1038/nclimate2437"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/srep03141",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025561999",
"https://doi.org/10.1038/srep03141"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00376-012-1259-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028391329",
"https://doi.org/10.1007/s00376-012-1259-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10994-013-5343-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009040336",
"https://doi.org/10.1007/s10994-013-5343-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12940-016-0102-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013157730",
"https://doi.org/10.1186/s12940-016-0102-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00704-009-0193-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007879444",
"https://doi.org/10.1007/s00704-009-0193-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10584-014-1306-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030232077",
"https://doi.org/10.1007/s10584-014-1306-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11269-017-1589-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083905399",
"https://doi.org/10.1007/s11269-017-1589-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00704-015-1480-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021748153",
"https://doi.org/10.1007/s00704-015-1480-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-658-12153-2_2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085560577",
"https://doi.org/10.1007/978-3-658-12153-2_2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-68677-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029883097",
"https://doi.org/10.1007/978-3-540-68677-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10584-017-1944-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084025657",
"https://doi.org/10.1007/s10584-017-1944-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s13347-015-0202-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034060592",
"https://doi.org/10.1007/s13347-015-0202-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10584-015-1435-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007976645",
"https://doi.org/10.1007/s10584-015-1435-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/srep22482",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047930706",
"https://doi.org/10.1038/srep22482"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-658-12153-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085565794",
"https://doi.org/10.1007/978-3-658-12153-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10584-016-1753-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038714277",
"https://doi.org/10.1007/s10584-016-1753-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature14539",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010020120",
"https://doi.org/10.1038/nature14539"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-02-25",
"datePublishedReg": "2019-02-25",
"description": "Commercial success of big data has led to speculation that big-data-like reasoning could partly replace theory-based approaches in science. Big data typically has been applied to \u2018small problems\u2019, which are well-structured cases characterized by repeated evaluation of predictions. Here, we show that in climate research, intermediate categories exist between classical domain science and big data, and that big-data elements have also been applied without the possibility of repeated evaluation. Big-data elements can be useful for climate research beyond small problems if combined with more traditional approaches based on domain-specific knowledge. The biggest potential for big-data elements, we argue, lies in socioeconomic climate research.",
"genre": "article",
"id": "sg:pub.10.1038/s41558-019-0404-1",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.6805076",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1044959",
"issn": [
"1758-678X",
"1758-6798"
],
"name": "Nature Climate Change",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "9"
}
],
"keywords": [
"big data elements",
"big data",
"small problems",
"domain-specific knowledge",
"domain science",
"traditional approaches",
"big potential",
"theory-based approach",
"climate research",
"reasoning",
"commercial success",
"data",
"research",
"evaluation of predictions",
"science",
"evaluation",
"knowledge",
"elements",
"prediction",
"success",
"categories",
"possibility",
"cases",
"potential",
"speculation",
"intermediate category",
"problem",
"approach"
],
"name": "Applying big data beyond small problems in climate research",
"pagination": "196-202",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1112363277"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/s41558-019-0404-1"
]
}
],
"sameAs": [
"https://doi.org/10.1038/s41558-019-0404-1",
"https://app.dimensions.ai/details/publication/pub.1112363277"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:26",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_820.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/s41558-019-0404-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41558-019-0404-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41558-019-0404-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41558-019-0404-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41558-019-0404-1'
This table displays all metadata directly associated to this object as RDF triples.
220 TRIPLES
22 PREDICATES
74 URIs
45 LITERALS
6 BLANK NODES