Low clouds link equilibrium climate sensitivity to hydrological sensitivity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09-17

AUTHORS

Masahiro Watanabe, Youichi Kamae, Hideo Shiogama, Anthony M. DeAngelis, Kentaroh Suzuki

ABSTRACT

Equilibrium climate sensitivity (ECS) and hydrological sensitivity describe the global mean surface temperature and precipitation responses to a doubling of atmospheric CO2. Despite their connection via the Earth’s energy budget, the physical linkage between these two metrics remains controversial. Here, using a global climate model with a perturbed mean hydrological cycle, we show that ECS and hydrological sensitivity per unit warming are anti-correlated owing to the low-cloud response to surface warming. When the amount of low clouds decreases, ECS is enhanced through reductions in the reflection of shortwave radiation. In contrast, hydrological sensitivity is suppressed through weakening of atmospheric longwave cooling, necessitating weakened condensational heating by precipitation. These compensating cloud effects are also robustly found in a multi-model ensemble, and further constrained using satellite observations. Our estimates, combined with an existing constraint to clear-sky shortwave absorption, suggest that hydrological sensitivity could be lower by 30% than raw estimates from global climate models. More... »

PAGES

901-906

References to SciGraph publications

  • 2015-04-20. Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in models in NATURE GEOSCIENCE
  • 2002-09-12. Constraints on future changes in climate and the hydrologic cycle in NATURE
  • 2013-01-10. Physically Consistent Responses of the Global Atmospheric Hydrological Cycle in Models and Observations in SURVEYS IN GEOPHYSICS
  • 2015-03-07. Rapid Adjustments of Cloud and Hydrological Cycle to Increasing CO2: a Review in CURRENT CLIMATE CHANGE REPORTS
  • 2015-12-09. An observational radiative constraint on hydrologic cycle intensification in NATURE
  • 2017-06-07. Tightening of tropical ascent and high clouds key to precipitation change in a warmer climate in NATURE COMMUNICATIONS
  • 2012-06-13. Climate models at their limit? in NATURE
  • 2013-04-21. Robust direct effect of carbon dioxide on tropical circulation and regional precipitation in NATURE GEOSCIENCE
  • 2012-07-22. Perturbed physics ensemble using the MIROC5 coupled atmosphere–ocean GCM without flux corrections: experimental design and results in CLIMATE DYNAMICS
  • 2010-05-07. Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles in CLIMATE DYNAMICS
  • 2008-10-26. The equilibrium sensitivity of the Earth's temperature to radiation changes in NATURE GEOSCIENCE
  • 2014-01-01. Spread in model climate sensitivity traced to atmospheric convective mixing in NATURE
  • 2017-09-29. Clearing clouds of uncertainty in NATURE CLIMATE CHANGE
  • 2013-03-23. On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates in CLIMATE DYNAMICS
  • 2017-04-17. Energy budget constraints on climate sensitivity in light of inconstant climate feedbacks in NATURE CLIMATE CHANGE
  • 2011-11-23. Energetic Constraints on Precipitation Under Climate Change in SURVEYS IN GEOPHYSICS
  • 2018-01-01. Inverse relationship between present-day tropical precipitation and its sensitivity to greenhouse warming in NATURE CLIMATE CHANGE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41558-018-0272-0

    DOI

    http://dx.doi.org/10.1038/s41558-018-0272-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106952186


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Atmosphere and Ocean Research Institute, University of Tokyo, Tokyo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Atmosphere and Ocean Research Institute, University of Tokyo, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Watanabe", 
            "givenName": "Masahiro", 
            "id": "sg:person.016316106377.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016316106377.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.217200.6", 
              "name": [
                "Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan", 
                "Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kamae", 
            "givenName": "Youichi", 
            "id": "sg:person.014264221555.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264221555.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan", 
              "id": "http://www.grid.ac/institutes/grid.140139.e", 
              "name": [
                "Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shiogama", 
            "givenName": "Hideo", 
            "id": "sg:person.011356656533.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356656533.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Science Systems and Applications, Lanham, MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.427409.c", 
              "name": [
                "Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA", 
                "Science Systems and Applications, Lanham, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "DeAngelis", 
            "givenName": "Anthony M.", 
            "id": "sg:person.0577320323.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577320323.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Atmosphere and Ocean Research Institute, University of Tokyo, Tokyo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Atmosphere and Ocean Research Institute, University of Tokyo, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Suzuki", 
            "givenName": "Kentaroh", 
            "id": "sg:person.014216745045.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014216745045.99"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nclimate3278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084860825", 
              "https://doi.org/10.1038/nclimate3278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo1799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023320468", 
              "https://doi.org/10.1038/ngeo1799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015288292", 
              "https://doi.org/10.1038/ngeo2414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature15770", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047355547", 
              "https://doi.org/10.1038/nature15770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10712-011-9159-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007387809", 
              "https://doi.org/10.1007/s10712-011-9159-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms15771", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085912948", 
              "https://doi.org/10.1038/ncomms15771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/486183a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027625855", 
              "https://doi.org/10.1038/486183a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016927016", 
              "https://doi.org/10.1038/nature12829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41558-017-0033-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099939079", 
              "https://doi.org/10.1038/s41558-017-0033-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-013-1725-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028387493", 
              "https://doi.org/10.1007/s00382-013-1725-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004923988", 
              "https://doi.org/10.1038/ngeo337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0808-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008516124", 
              "https://doi.org/10.1007/s00382-010-0808-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-012-1441-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015787016", 
              "https://doi.org/10.1007/s00382-012-1441-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40641-015-0007-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012023852", 
              "https://doi.org/10.1007/s40641-015-0007-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10712-012-9213-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043911982", 
              "https://doi.org/10.1007/s10712-012-9213-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046916950", 
              "https://doi.org/10.1038/nature01092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate3402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091983027", 
              "https://doi.org/10.1038/nclimate3402"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-09-17", 
        "datePublishedReg": "2018-09-17", 
        "description": "Equilibrium climate sensitivity (ECS) and hydrological sensitivity describe the global mean surface temperature and precipitation responses to a doubling of atmospheric CO2. Despite their connection via the Earth\u2019s energy budget, the physical linkage between these two metrics remains controversial. Here, using a global climate model with a perturbed mean hydrological cycle, we show that ECS and hydrological sensitivity per unit warming are anti-correlated owing to the low-cloud response to surface warming. When the amount of low clouds decreases, ECS is enhanced through reductions in the reflection of shortwave radiation. In contrast, hydrological sensitivity is suppressed through weakening of atmospheric longwave cooling, necessitating weakened condensational heating by precipitation. These compensating cloud effects are also robustly found in a multi-model ensemble, and further constrained using satellite observations. Our estimates, combined with an existing constraint to clear-sky shortwave absorption, suggest that hydrological sensitivity could be lower by 30% than raw estimates from global climate models.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41558-018-0272-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6839810", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6130437", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1044959", 
            "issn": [
              "1758-678X", 
              "1758-6798"
            ], 
            "name": "Nature Climate Change", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "keywords": [
          "equilibrium climate sensitivity", 
          "global climate models", 
          "hydrological sensitivity", 
          "climate models", 
          "climate sensitivity", 
          "clear-sky shortwave absorption", 
          "global mean surface temperature", 
          "energy budget", 
          "mean hydrological cycle", 
          "low clouds decreases", 
          "Earth's energy budget", 
          "low-cloud response", 
          "multi-model ensemble", 
          "mean surface temperature", 
          "precipitation response", 
          "unit warming", 
          "hydrological cycle", 
          "longwave cooling", 
          "satellite observations", 
          "shortwave absorption", 
          "shortwave radiation", 
          "low clouds", 
          "cloud decreases", 
          "condensational heating", 
          "atmospheric CO2", 
          "surface temperature", 
          "cloud effects", 
          "raw estimates", 
          "warming", 
          "precipitation", 
          "estimates", 
          "physical linkage", 
          "budget", 
          "weakening", 
          "cooling", 
          "cloud", 
          "CO2", 
          "ensemble", 
          "cycle", 
          "doubling", 
          "model", 
          "heating", 
          "temperature", 
          "constraints", 
          "radiation", 
          "owing", 
          "amount", 
          "contrast", 
          "sensitivity", 
          "linkage", 
          "decrease", 
          "reflection", 
          "response", 
          "connection", 
          "metrics", 
          "reduction", 
          "effect", 
          "absorption", 
          "observations"
        ], 
        "name": "Low clouds link equilibrium climate sensitivity to hydrological sensitivity", 
        "pagination": "901-906", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106952186"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41558-018-0272-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41558-018-0272-0", 
          "https://app.dimensions.ai/details/publication/pub.1106952186"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_789.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41558-018-0272-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41558-018-0272-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41558-018-0272-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41558-018-0272-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41558-018-0272-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    232 TRIPLES      22 PREDICATES      102 URIs      76 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41558-018-0272-0 schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 anzsrc-for:0406
    4 schema:author Ne254c4c90aa44dea8ce1a186614f11ee
    5 schema:citation sg:pub.10.1007/s00382-010-0808-0
    6 sg:pub.10.1007/s00382-012-1441-x
    7 sg:pub.10.1007/s00382-013-1725-9
    8 sg:pub.10.1007/s10712-011-9159-6
    9 sg:pub.10.1007/s10712-012-9213-z
    10 sg:pub.10.1007/s40641-015-0007-5
    11 sg:pub.10.1038/486183a
    12 sg:pub.10.1038/nature01092
    13 sg:pub.10.1038/nature12829
    14 sg:pub.10.1038/nature15770
    15 sg:pub.10.1038/nclimate3278
    16 sg:pub.10.1038/nclimate3402
    17 sg:pub.10.1038/ncomms15771
    18 sg:pub.10.1038/ngeo1799
    19 sg:pub.10.1038/ngeo2414
    20 sg:pub.10.1038/ngeo337
    21 sg:pub.10.1038/s41558-017-0033-5
    22 schema:datePublished 2018-09-17
    23 schema:datePublishedReg 2018-09-17
    24 schema:description Equilibrium climate sensitivity (ECS) and hydrological sensitivity describe the global mean surface temperature and precipitation responses to a doubling of atmospheric CO2. Despite their connection via the Earth’s energy budget, the physical linkage between these two metrics remains controversial. Here, using a global climate model with a perturbed mean hydrological cycle, we show that ECS and hydrological sensitivity per unit warming are anti-correlated owing to the low-cloud response to surface warming. When the amount of low clouds decreases, ECS is enhanced through reductions in the reflection of shortwave radiation. In contrast, hydrological sensitivity is suppressed through weakening of atmospheric longwave cooling, necessitating weakened condensational heating by precipitation. These compensating cloud effects are also robustly found in a multi-model ensemble, and further constrained using satellite observations. Our estimates, combined with an existing constraint to clear-sky shortwave absorption, suggest that hydrological sensitivity could be lower by 30% than raw estimates from global climate models.
    25 schema:genre article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree false
    28 schema:isPartOf N395a1a4250854c13bdf2d5184ebeea80
    29 N45b59b135b4745929928fd007a14b53c
    30 sg:journal.1044959
    31 schema:keywords CO2
    32 Earth's energy budget
    33 absorption
    34 amount
    35 atmospheric CO2
    36 budget
    37 clear-sky shortwave absorption
    38 climate models
    39 climate sensitivity
    40 cloud
    41 cloud decreases
    42 cloud effects
    43 condensational heating
    44 connection
    45 constraints
    46 contrast
    47 cooling
    48 cycle
    49 decrease
    50 doubling
    51 effect
    52 energy budget
    53 ensemble
    54 equilibrium climate sensitivity
    55 estimates
    56 global climate models
    57 global mean surface temperature
    58 heating
    59 hydrological cycle
    60 hydrological sensitivity
    61 linkage
    62 longwave cooling
    63 low clouds
    64 low clouds decreases
    65 low-cloud response
    66 mean hydrological cycle
    67 mean surface temperature
    68 metrics
    69 model
    70 multi-model ensemble
    71 observations
    72 owing
    73 physical linkage
    74 precipitation
    75 precipitation response
    76 radiation
    77 raw estimates
    78 reduction
    79 reflection
    80 response
    81 satellite observations
    82 sensitivity
    83 shortwave absorption
    84 shortwave radiation
    85 surface temperature
    86 temperature
    87 unit warming
    88 warming
    89 weakening
    90 schema:name Low clouds link equilibrium climate sensitivity to hydrological sensitivity
    91 schema:pagination 901-906
    92 schema:productId N04c91b22839a4ac7a6b8b0cd20873573
    93 Nf36619c1f8f9461391ddc1fa40bc1170
    94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106952186
    95 https://doi.org/10.1038/s41558-018-0272-0
    96 schema:sdDatePublished 2022-05-20T07:35
    97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    98 schema:sdPublisher N4d316393e6b0462a93ab3c8c19e37460
    99 schema:url https://doi.org/10.1038/s41558-018-0272-0
    100 sgo:license sg:explorer/license/
    101 sgo:sdDataset articles
    102 rdf:type schema:ScholarlyArticle
    103 N04c91b22839a4ac7a6b8b0cd20873573 schema:name dimensions_id
    104 schema:value pub.1106952186
    105 rdf:type schema:PropertyValue
    106 N19bc32f4ddbe4da9b9693598b36434c3 rdf:first sg:person.014264221555.90
    107 rdf:rest N521a05116b004d9193dae12485011e66
    108 N211e5e5e844d43f2a97ad361fadf546c rdf:first sg:person.0577320323.14
    109 rdf:rest Ne050cc42c21647ad86220dd02be778b3
    110 N395a1a4250854c13bdf2d5184ebeea80 schema:issueNumber 10
    111 rdf:type schema:PublicationIssue
    112 N45b59b135b4745929928fd007a14b53c schema:volumeNumber 8
    113 rdf:type schema:PublicationVolume
    114 N4d316393e6b0462a93ab3c8c19e37460 schema:name Springer Nature - SN SciGraph project
    115 rdf:type schema:Organization
    116 N521a05116b004d9193dae12485011e66 rdf:first sg:person.011356656533.12
    117 rdf:rest N211e5e5e844d43f2a97ad361fadf546c
    118 Ne050cc42c21647ad86220dd02be778b3 rdf:first sg:person.014216745045.99
    119 rdf:rest rdf:nil
    120 Ne254c4c90aa44dea8ce1a186614f11ee rdf:first sg:person.016316106377.80
    121 rdf:rest N19bc32f4ddbe4da9b9693598b36434c3
    122 Nf36619c1f8f9461391ddc1fa40bc1170 schema:name doi
    123 schema:value 10.1038/s41558-018-0272-0
    124 rdf:type schema:PropertyValue
    125 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Earth Sciences
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Atmospheric Sciences
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Physical Geography and Environmental Geoscience
    133 rdf:type schema:DefinedTerm
    134 sg:grant.6130437 http://pending.schema.org/fundedItem sg:pub.10.1038/s41558-018-0272-0
    135 rdf:type schema:MonetaryGrant
    136 sg:grant.6839810 http://pending.schema.org/fundedItem sg:pub.10.1038/s41558-018-0272-0
    137 rdf:type schema:MonetaryGrant
    138 sg:journal.1044959 schema:issn 1758-678X
    139 1758-6798
    140 schema:name Nature Climate Change
    141 schema:publisher Springer Nature
    142 rdf:type schema:Periodical
    143 sg:person.011356656533.12 schema:affiliation grid-institutes:grid.140139.e
    144 schema:familyName Shiogama
    145 schema:givenName Hideo
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356656533.12
    147 rdf:type schema:Person
    148 sg:person.014216745045.99 schema:affiliation grid-institutes:grid.26999.3d
    149 schema:familyName Suzuki
    150 schema:givenName Kentaroh
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014216745045.99
    152 rdf:type schema:Person
    153 sg:person.014264221555.90 schema:affiliation grid-institutes:grid.217200.6
    154 schema:familyName Kamae
    155 schema:givenName Youichi
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264221555.90
    157 rdf:type schema:Person
    158 sg:person.016316106377.80 schema:affiliation grid-institutes:grid.26999.3d
    159 schema:familyName Watanabe
    160 schema:givenName Masahiro
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016316106377.80
    162 rdf:type schema:Person
    163 sg:person.0577320323.14 schema:affiliation grid-institutes:grid.427409.c
    164 schema:familyName DeAngelis
    165 schema:givenName Anthony M.
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577320323.14
    167 rdf:type schema:Person
    168 sg:pub.10.1007/s00382-010-0808-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008516124
    169 https://doi.org/10.1007/s00382-010-0808-0
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s00382-012-1441-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015787016
    172 https://doi.org/10.1007/s00382-012-1441-x
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s00382-013-1725-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028387493
    175 https://doi.org/10.1007/s00382-013-1725-9
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s10712-011-9159-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007387809
    178 https://doi.org/10.1007/s10712-011-9159-6
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s10712-012-9213-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1043911982
    181 https://doi.org/10.1007/s10712-012-9213-z
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s40641-015-0007-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012023852
    184 https://doi.org/10.1007/s40641-015-0007-5
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/486183a schema:sameAs https://app.dimensions.ai/details/publication/pub.1027625855
    187 https://doi.org/10.1038/486183a
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/nature01092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046916950
    190 https://doi.org/10.1038/nature01092
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/nature12829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016927016
    193 https://doi.org/10.1038/nature12829
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/nature15770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047355547
    196 https://doi.org/10.1038/nature15770
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/nclimate3278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084860825
    199 https://doi.org/10.1038/nclimate3278
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/nclimate3402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091983027
    202 https://doi.org/10.1038/nclimate3402
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/ncomms15771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085912948
    205 https://doi.org/10.1038/ncomms15771
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/ngeo1799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023320468
    208 https://doi.org/10.1038/ngeo1799
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/ngeo2414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015288292
    211 https://doi.org/10.1038/ngeo2414
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/ngeo337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004923988
    214 https://doi.org/10.1038/ngeo337
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/s41558-017-0033-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099939079
    217 https://doi.org/10.1038/s41558-017-0033-5
    218 rdf:type schema:CreativeWork
    219 grid-institutes:grid.140139.e schema:alternateName Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan
    220 schema:name Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan
    221 rdf:type schema:Organization
    222 grid-institutes:grid.217200.6 schema:alternateName Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
    223 schema:name Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
    224 Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
    225 rdf:type schema:Organization
    226 grid-institutes:grid.26999.3d schema:alternateName Atmosphere and Ocean Research Institute, University of Tokyo, Tokyo, Japan
    227 schema:name Atmosphere and Ocean Research Institute, University of Tokyo, Tokyo, Japan
    228 rdf:type schema:Organization
    229 grid-institutes:grid.427409.c schema:alternateName Science Systems and Applications, Lanham, MD, USA
    230 schema:name Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA
    231 Science Systems and Applications, Lanham, MD, USA
    232 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...