Actin remodelling controls proteasome homeostasis upon stress View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-06-23

AUTHORS

Thomas David Williams, Roberta Cacioppo, Alexander Agrotis, Ailsa Black, Houjiang Zhou, Adrien Rousseau

ABSTRACT

When cells are stressed, bulk translation is often downregulated to reduce energy demands while stress-response proteins are simultaneously upregulated. To promote proteasome assembly and activity and maintain cell viability upon TORC1 inhibition, 19S regulatory-particle assembly chaperones (RPACs) are selectively translated. However, the molecular mechanism for such selective translational upregulation is unclear. Here, using yeast, we discover that remodelling of the actin cytoskeleton is important for RPAC translation following TORC1 inhibition. mRNA of the RPAC ADC17 is associated with actin cables and is enriched at cortical actin patches under stress, dependent upon the early endocytic protein Ede1. ede1∆ cells failed to induce RPACs and proteasome assembly upon TORC1 inhibition. Conversely, artificially tethering ADC17 mRNA to cortical actin patches enhanced its translation upon stress. These findings suggest that actin-dense structures such as cortical actin patches may serve as a translation platform for a subset of stress-induced mRNAs including regulators of proteasome homeostasis. More... »

PAGES

1077-1087

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41556-022-00938-4

DOI

http://dx.doi.org/10.1038/s41556-022-00938-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148901182

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35739319


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Actins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Homeostasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mechanistic Target of Rapamycin Complex 1", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Chaperones", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteasome Endopeptidase Complex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Messenger", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK", 
          "id": "http://www.grid.ac/institutes/grid.451071.6", 
          "name": [
            "MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Williams", 
        "givenName": "Thomas David", 
        "id": "sg:person.011054657525.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011054657525.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK", 
          "id": "http://www.grid.ac/institutes/grid.451071.6", 
          "name": [
            "MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cacioppo", 
        "givenName": "Roberta", 
        "id": "sg:person.013502115162.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013502115162.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK", 
          "id": "http://www.grid.ac/institutes/grid.451071.6", 
          "name": [
            "MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agrotis", 
        "givenName": "Alexander", 
        "id": "sg:person.01364003506.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364003506.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK", 
          "id": "http://www.grid.ac/institutes/grid.451071.6", 
          "name": [
            "MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Black", 
        "givenName": "Ailsa", 
        "id": "sg:person.015075056162.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015075056162.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK", 
          "id": "http://www.grid.ac/institutes/grid.451071.6", 
          "name": [
            "MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Houjiang", 
        "id": "sg:person.01010075001.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010075001.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK", 
          "id": "http://www.grid.ac/institutes/grid.451071.6", 
          "name": [
            "MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rousseau", 
        "givenName": "Adrien", 
        "id": "sg:person.01270604363.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270604363.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41580-018-0040-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105913212", 
          "https://doi.org/10.1038/s41580-018-0040-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/38015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029070451", 
          "https://doi.org/10.1038/38015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature18943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021103290", 
          "https://doi.org/10.1038/nature18943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051657361", 
          "https://doi.org/10.1038/nature08063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm3958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042361001", 
          "https://doi.org/10.1038/nrm3958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41580-019-0101-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111977848", 
          "https://doi.org/10.1038/s41580-019-0101-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-06-23", 
    "datePublishedReg": "2022-06-23", 
    "description": "When cells are stressed, bulk translation is often downregulated to reduce energy demands while stress-response proteins are simultaneously upregulated. To promote proteasome assembly and activity and maintain cell viability upon TORC1 inhibition, 19S regulatory-particle assembly chaperones (RPACs) are selectively translated. However, the molecular mechanism for such selective translational upregulation is unclear. Here, using yeast, we discover that remodelling of the actin cytoskeleton is important for RPAC translation following TORC1 inhibition. mRNA of the RPAC ADC17 is associated with actin cables and is enriched at cortical actin patches under stress, dependent upon the early endocytic protein Ede1. ede1\u2206 cells failed to induce RPACs and proteasome assembly upon TORC1 inhibition. Conversely, artificially tethering ADC17 mRNA to cortical actin patches enhanced its translation upon stress. These findings suggest that actin-dense structures such as cortical actin patches may serve as a translation platform for a subset of stress-induced mRNAs including regulators of proteasome homeostasis.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41556-022-00938-4", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8469937", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1021344", 
        "issn": [
          "1465-7392", 
          "1476-4679"
        ], 
        "name": "Nature Cell Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "cortical actin patches", 
      "actin patches", 
      "TORC1 inhibition", 
      "stress-induced mRNAs", 
      "stress response proteins", 
      "assembly chaperones", 
      "proteasome homeostasis", 
      "actin cytoskeleton", 
      "proteasome assembly", 
      "actin cables", 
      "molecular mechanisms", 
      "translational upregulation", 
      "bulk translation", 
      "mRNA", 
      "cell viability", 
      "homeostasis", 
      "Ede1", 
      "assembly", 
      "chaperones", 
      "cells", 
      "translation", 
      "inhibition", 
      "cytoskeleton", 
      "yeast", 
      "regulator", 
      "protein", 
      "stress", 
      "patches", 
      "upregulation", 
      "remodelling", 
      "viability", 
      "mechanism", 
      "activity", 
      "subset", 
      "structure", 
      "energy demand", 
      "control", 
      "findings", 
      "translation platform", 
      "platform", 
      "demand", 
      "cable"
    ], 
    "name": "Actin remodelling controls proteasome homeostasis upon stress", 
    "pagination": "1077-1087", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148901182"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41556-022-00938-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35739319"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41556-022-00938-4", 
      "https://app.dimensions.ai/details/publication/pub.1148901182"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_931.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41556-022-00938-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41556-022-00938-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41556-022-00938-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41556-022-00938-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41556-022-00938-4'


 

This table displays all metadata directly associated to this object as RDF triples.

192 TRIPLES      21 PREDICATES      80 URIs      66 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41556-022-00938-4 schema:about N0bad7366107d47f18c52b293e6dac0b9
2 N31bb914d43124d53be8921a1bea2b460
3 N57316ef769aa4617aa63a6db0e920f52
4 N733f3319ce7e4ae5b663263785ce0df5
5 Nc92c69c8ca484806ad218b1ef07b9d26
6 Nd5f76e2764f94c89a372d96c563fdc5e
7 Ne90bf16d10ab4deeb6f9a141c19a61ab
8 anzsrc-for:06
9 anzsrc-for:0601
10 schema:author Na71240c687ec4f5c8b36d17d5ffa3fbe
11 schema:citation sg:pub.10.1038/38015
12 sg:pub.10.1038/nature08063
13 sg:pub.10.1038/nature18943
14 sg:pub.10.1038/nrm3958
15 sg:pub.10.1038/s41580-018-0040-z
16 sg:pub.10.1038/s41580-019-0101-y
17 schema:datePublished 2022-06-23
18 schema:datePublishedReg 2022-06-23
19 schema:description When cells are stressed, bulk translation is often downregulated to reduce energy demands while stress-response proteins are simultaneously upregulated. To promote proteasome assembly and activity and maintain cell viability upon TORC1 inhibition, 19S regulatory-particle assembly chaperones (RPACs) are selectively translated. However, the molecular mechanism for such selective translational upregulation is unclear. Here, using yeast, we discover that remodelling of the actin cytoskeleton is important for RPAC translation following TORC1 inhibition. mRNA of the RPAC ADC17 is associated with actin cables and is enriched at cortical actin patches under stress, dependent upon the early endocytic protein Ede1. ede1∆ cells failed to induce RPACs and proteasome assembly upon TORC1 inhibition. Conversely, artificially tethering ADC17 mRNA to cortical actin patches enhanced its translation upon stress. These findings suggest that actin-dense structures such as cortical actin patches may serve as a translation platform for a subset of stress-induced mRNAs including regulators of proteasome homeostasis.
20 schema:genre article
21 schema:isAccessibleForFree true
22 schema:isPartOf N8294c8f4162c45e593702ff70b882f26
23 Nc1c10ae509434c4b898f8577cb171e60
24 sg:journal.1021344
25 schema:keywords Ede1
26 TORC1 inhibition
27 actin cables
28 actin cytoskeleton
29 actin patches
30 activity
31 assembly
32 assembly chaperones
33 bulk translation
34 cable
35 cell viability
36 cells
37 chaperones
38 control
39 cortical actin patches
40 cytoskeleton
41 demand
42 energy demand
43 findings
44 homeostasis
45 inhibition
46 mRNA
47 mechanism
48 molecular mechanisms
49 patches
50 platform
51 proteasome assembly
52 proteasome homeostasis
53 protein
54 regulator
55 remodelling
56 stress
57 stress response proteins
58 stress-induced mRNAs
59 structure
60 subset
61 translation
62 translation platform
63 translational upregulation
64 upregulation
65 viability
66 yeast
67 schema:name Actin remodelling controls proteasome homeostasis upon stress
68 schema:pagination 1077-1087
69 schema:productId N6456e585ab8442818b76bfc44c6e80e1
70 N97e9b6250a3f44abac93913b8cac03f2
71 Nf80ab25ade7a42828f7492cd3a1bd571
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148901182
73 https://doi.org/10.1038/s41556-022-00938-4
74 schema:sdDatePublished 2022-11-24T21:09
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N9878657297bd4359b22fca6172869cc2
77 schema:url https://doi.org/10.1038/s41556-022-00938-4
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N0bad7366107d47f18c52b293e6dac0b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name RNA, Messenger
83 rdf:type schema:DefinedTerm
84 N31bb914d43124d53be8921a1bea2b460 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Actins
86 rdf:type schema:DefinedTerm
87 N40a814c9e9cc4cf38b1303ff80828228 rdf:first sg:person.01010075001.73
88 rdf:rest Nc6a755a349594c7382d7951e74ebacea
89 N57316ef769aa4617aa63a6db0e920f52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Proteasome Endopeptidase Complex
91 rdf:type schema:DefinedTerm
92 N6456e585ab8442818b76bfc44c6e80e1 schema:name doi
93 schema:value 10.1038/s41556-022-00938-4
94 rdf:type schema:PropertyValue
95 N733f3319ce7e4ae5b663263785ce0df5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Homeostasis
97 rdf:type schema:DefinedTerm
98 N8294c8f4162c45e593702ff70b882f26 schema:issueNumber 7
99 rdf:type schema:PublicationIssue
100 N97e9b6250a3f44abac93913b8cac03f2 schema:name dimensions_id
101 schema:value pub.1148901182
102 rdf:type schema:PropertyValue
103 N9878657297bd4359b22fca6172869cc2 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 Na03a9495e3564a00952fb57d48ba2fc1 rdf:first sg:person.013502115162.41
106 rdf:rest Nd5c506256e17435bb9d0596766119e81
107 Na71240c687ec4f5c8b36d17d5ffa3fbe rdf:first sg:person.011054657525.60
108 rdf:rest Na03a9495e3564a00952fb57d48ba2fc1
109 Nc1c10ae509434c4b898f8577cb171e60 schema:volumeNumber 24
110 rdf:type schema:PublicationVolume
111 Nc6a755a349594c7382d7951e74ebacea rdf:first sg:person.01270604363.00
112 rdf:rest rdf:nil
113 Nc92c69c8ca484806ad218b1ef07b9d26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Saccharomyces cerevisiae
115 rdf:type schema:DefinedTerm
116 Nd5c506256e17435bb9d0596766119e81 rdf:first sg:person.01364003506.87
117 rdf:rest Neb5e0b20e8764733ae390d18fc86c65a
118 Nd5f76e2764f94c89a372d96c563fdc5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Molecular Chaperones
120 rdf:type schema:DefinedTerm
121 Ne90bf16d10ab4deeb6f9a141c19a61ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Mechanistic Target of Rapamycin Complex 1
123 rdf:type schema:DefinedTerm
124 Neb5e0b20e8764733ae390d18fc86c65a rdf:first sg:person.015075056162.29
125 rdf:rest N40a814c9e9cc4cf38b1303ff80828228
126 Nf80ab25ade7a42828f7492cd3a1bd571 schema:name pubmed_id
127 schema:value 35739319
128 rdf:type schema:PropertyValue
129 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
130 schema:name Biological Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
133 schema:name Biochemistry and Cell Biology
134 rdf:type schema:DefinedTerm
135 sg:grant.8469937 http://pending.schema.org/fundedItem sg:pub.10.1038/s41556-022-00938-4
136 rdf:type schema:MonetaryGrant
137 sg:journal.1021344 schema:issn 1465-7392
138 1476-4679
139 schema:name Nature Cell Biology
140 schema:publisher Springer Nature
141 rdf:type schema:Periodical
142 sg:person.01010075001.73 schema:affiliation grid-institutes:grid.451071.6
143 schema:familyName Zhou
144 schema:givenName Houjiang
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010075001.73
146 rdf:type schema:Person
147 sg:person.011054657525.60 schema:affiliation grid-institutes:grid.451071.6
148 schema:familyName Williams
149 schema:givenName Thomas David
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011054657525.60
151 rdf:type schema:Person
152 sg:person.01270604363.00 schema:affiliation grid-institutes:grid.451071.6
153 schema:familyName Rousseau
154 schema:givenName Adrien
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270604363.00
156 rdf:type schema:Person
157 sg:person.013502115162.41 schema:affiliation grid-institutes:grid.451071.6
158 schema:familyName Cacioppo
159 schema:givenName Roberta
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013502115162.41
161 rdf:type schema:Person
162 sg:person.01364003506.87 schema:affiliation grid-institutes:grid.451071.6
163 schema:familyName Agrotis
164 schema:givenName Alexander
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364003506.87
166 rdf:type schema:Person
167 sg:person.015075056162.29 schema:affiliation grid-institutes:grid.451071.6
168 schema:familyName Black
169 schema:givenName Ailsa
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015075056162.29
171 rdf:type schema:Person
172 sg:pub.10.1038/38015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029070451
173 https://doi.org/10.1038/38015
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/nature08063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051657361
176 https://doi.org/10.1038/nature08063
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nature18943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021103290
179 https://doi.org/10.1038/nature18943
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nrm3958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042361001
182 https://doi.org/10.1038/nrm3958
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/s41580-018-0040-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1105913212
185 https://doi.org/10.1038/s41580-018-0040-z
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/s41580-019-0101-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1111977848
188 https://doi.org/10.1038/s41580-019-0101-y
189 rdf:type schema:CreativeWork
190 grid-institutes:grid.451071.6 schema:alternateName MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
191 schema:name MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
192 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...