Actin remodelling controls proteasome homeostasis upon stress View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-06-23

AUTHORS

Thomas David Williams, Roberta Cacioppo, Alexander Agrotis, Ailsa Black, Houjiang Zhou, Adrien Rousseau

ABSTRACT

When cells are stressed, bulk translation is often downregulated to reduce energy demands while stress-response proteins are simultaneously upregulated. To promote proteasome assembly and activity and maintain cell viability upon TORC1 inhibition, 19S regulatory-particle assembly chaperones (RPACs) are selectively translated. However, the molecular mechanism for such selective translational upregulation is unclear. Here, using yeast, we discover that remodelling of the actin cytoskeleton is important for RPAC translation following TORC1 inhibition. mRNA of the RPAC ADC17 is associated with actin cables and is enriched at cortical actin patches under stress, dependent upon the early endocytic protein Ede1. ede1∆ cells failed to induce RPACs and proteasome assembly upon TORC1 inhibition. Conversely, artificially tethering ADC17 mRNA to cortical actin patches enhanced its translation upon stress. These findings suggest that actin-dense structures such as cortical actin patches may serve as a translation platform for a subset of stress-induced mRNAs including regulators of proteasome homeostasis. More... »

PAGES

1077-1087

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41556-022-00938-4

DOI

http://dx.doi.org/10.1038/s41556-022-00938-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148901182

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35739319


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Actins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Homeostasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mechanistic Target of Rapamycin Complex 1", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Chaperones", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteasome Endopeptidase Complex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Messenger", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK", 
          "id": "http://www.grid.ac/institutes/grid.451071.6", 
          "name": [
            "MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Williams", 
        "givenName": "Thomas David", 
        "id": "sg:person.011054657525.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011054657525.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK", 
          "id": "http://www.grid.ac/institutes/grid.451071.6", 
          "name": [
            "MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cacioppo", 
        "givenName": "Roberta", 
        "id": "sg:person.013502115162.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013502115162.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK", 
          "id": "http://www.grid.ac/institutes/grid.451071.6", 
          "name": [
            "MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agrotis", 
        "givenName": "Alexander", 
        "id": "sg:person.01364003506.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364003506.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK", 
          "id": "http://www.grid.ac/institutes/grid.451071.6", 
          "name": [
            "MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Black", 
        "givenName": "Ailsa", 
        "id": "sg:person.015075056162.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015075056162.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK", 
          "id": "http://www.grid.ac/institutes/grid.451071.6", 
          "name": [
            "MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Houjiang", 
        "id": "sg:person.01010075001.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010075001.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK", 
          "id": "http://www.grid.ac/institutes/grid.451071.6", 
          "name": [
            "MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rousseau", 
        "givenName": "Adrien", 
        "id": "sg:person.01270604363.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270604363.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/38015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029070451", 
          "https://doi.org/10.1038/38015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051657361", 
          "https://doi.org/10.1038/nature08063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41580-019-0101-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111977848", 
          "https://doi.org/10.1038/s41580-019-0101-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41580-018-0040-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105913212", 
          "https://doi.org/10.1038/s41580-018-0040-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature18943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021103290", 
          "https://doi.org/10.1038/nature18943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm3958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042361001", 
          "https://doi.org/10.1038/nrm3958"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-06-23", 
    "datePublishedReg": "2022-06-23", 
    "description": "When cells are stressed, bulk translation is often downregulated to reduce energy demands while stress-response proteins are simultaneously upregulated. To promote proteasome assembly and activity and maintain cell viability upon TORC1 inhibition, 19S regulatory-particle assembly chaperones (RPACs) are selectively translated. However, the molecular mechanism for such selective translational upregulation is unclear. Here, using yeast, we discover that remodelling of the actin cytoskeleton is important for RPAC translation following TORC1 inhibition. mRNA of the RPAC ADC17 is associated with actin cables and is enriched at cortical actin patches under stress, dependent upon the early endocytic protein Ede1. ede1\u2206 cells failed to induce RPACs and proteasome assembly upon TORC1 inhibition. Conversely, artificially tethering ADC17 mRNA to cortical actin patches enhanced its translation upon stress. These findings suggest that actin-dense structures such as cortical actin patches may serve as a translation platform for a subset of stress-induced mRNAs including regulators of proteasome homeostasis.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41556-022-00938-4", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8469937", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1021344", 
        "issn": [
          "1465-7392", 
          "1476-4679"
        ], 
        "name": "Nature Cell Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "cortical actin patches", 
      "actin patches", 
      "TORC1 inhibition", 
      "stress-induced mRNAs", 
      "stress response proteins", 
      "assembly chaperones", 
      "proteasome homeostasis", 
      "actin cytoskeleton", 
      "proteasome assembly", 
      "actin cables", 
      "molecular mechanisms", 
      "translational upregulation", 
      "bulk translation", 
      "mRNA", 
      "cell viability", 
      "homeostasis", 
      "Ede1", 
      "assembly", 
      "chaperones", 
      "cells", 
      "translation", 
      "inhibition", 
      "cytoskeleton", 
      "yeast", 
      "regulator", 
      "protein", 
      "stress", 
      "patches", 
      "upregulation", 
      "remodelling", 
      "viability", 
      "mechanism", 
      "activity", 
      "subset", 
      "structure", 
      "energy demand", 
      "control", 
      "findings", 
      "translation platform", 
      "platform", 
      "demand", 
      "cable"
    ], 
    "name": "Actin remodelling controls proteasome homeostasis upon stress", 
    "pagination": "1077-1087", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148901182"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41556-022-00938-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35739319"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41556-022-00938-4", 
      "https://app.dimensions.ai/details/publication/pub.1148901182"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_925.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41556-022-00938-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41556-022-00938-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41556-022-00938-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41556-022-00938-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41556-022-00938-4'


 

This table displays all metadata directly associated to this object as RDF triples.

192 TRIPLES      21 PREDICATES      80 URIs      66 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41556-022-00938-4 schema:about N1c37d2c818a542ffa438cc2514548920
2 N354bb19123f944a6a02b4dc0f3de86e2
3 N90830b44844d456ca98cd121f9c4b27d
4 Na595e56eb56943688b146022e13ecd65
5 Ne65dc5cce53343e889bef5ce70a964d8
6 Nf24fbad385aa4004abdc13b69276d2a2
7 Nf44e6ff693864d3280167cd4b6b53496
8 anzsrc-for:06
9 anzsrc-for:0601
10 schema:author Nd1bc20dfd7e143a7b9f6fae0f1783405
11 schema:citation sg:pub.10.1038/38015
12 sg:pub.10.1038/nature08063
13 sg:pub.10.1038/nature18943
14 sg:pub.10.1038/nrm3958
15 sg:pub.10.1038/s41580-018-0040-z
16 sg:pub.10.1038/s41580-019-0101-y
17 schema:datePublished 2022-06-23
18 schema:datePublishedReg 2022-06-23
19 schema:description When cells are stressed, bulk translation is often downregulated to reduce energy demands while stress-response proteins are simultaneously upregulated. To promote proteasome assembly and activity and maintain cell viability upon TORC1 inhibition, 19S regulatory-particle assembly chaperones (RPACs) are selectively translated. However, the molecular mechanism for such selective translational upregulation is unclear. Here, using yeast, we discover that remodelling of the actin cytoskeleton is important for RPAC translation following TORC1 inhibition. mRNA of the RPAC ADC17 is associated with actin cables and is enriched at cortical actin patches under stress, dependent upon the early endocytic protein Ede1. ede1∆ cells failed to induce RPACs and proteasome assembly upon TORC1 inhibition. Conversely, artificially tethering ADC17 mRNA to cortical actin patches enhanced its translation upon stress. These findings suggest that actin-dense structures such as cortical actin patches may serve as a translation platform for a subset of stress-induced mRNAs including regulators of proteasome homeostasis.
20 schema:genre article
21 schema:isAccessibleForFree true
22 schema:isPartOf N6ae7c8b0ff5549fa8d108383c6366198
23 Ne4c92b16f0384734ba1d2b7ad72fb602
24 sg:journal.1021344
25 schema:keywords Ede1
26 TORC1 inhibition
27 actin cables
28 actin cytoskeleton
29 actin patches
30 activity
31 assembly
32 assembly chaperones
33 bulk translation
34 cable
35 cell viability
36 cells
37 chaperones
38 control
39 cortical actin patches
40 cytoskeleton
41 demand
42 energy demand
43 findings
44 homeostasis
45 inhibition
46 mRNA
47 mechanism
48 molecular mechanisms
49 patches
50 platform
51 proteasome assembly
52 proteasome homeostasis
53 protein
54 regulator
55 remodelling
56 stress
57 stress response proteins
58 stress-induced mRNAs
59 structure
60 subset
61 translation
62 translation platform
63 translational upregulation
64 upregulation
65 viability
66 yeast
67 schema:name Actin remodelling controls proteasome homeostasis upon stress
68 schema:pagination 1077-1087
69 schema:productId N1abd72eed7f84d58ad1eb7ebaf04800c
70 Ncee2562d38bc45d9840383679f7ce71c
71 Ned07a505a6c44212bd132e865dc100ca
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148901182
73 https://doi.org/10.1038/s41556-022-00938-4
74 schema:sdDatePublished 2022-09-02T16:07
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher Naeb6dbc441334e39a8e5ef6b3b161493
77 schema:url https://doi.org/10.1038/s41556-022-00938-4
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N1abd72eed7f84d58ad1eb7ebaf04800c schema:name dimensions_id
82 schema:value pub.1148901182
83 rdf:type schema:PropertyValue
84 N1c37d2c818a542ffa438cc2514548920 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Mechanistic Target of Rapamycin Complex 1
86 rdf:type schema:DefinedTerm
87 N1d856a76c0cf4a11b0b0883b5f67f2f6 rdf:first sg:person.013502115162.41
88 rdf:rest N94eb46492fb94e90982c4035b5130bf3
89 N354bb19123f944a6a02b4dc0f3de86e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Saccharomyces cerevisiae
91 rdf:type schema:DefinedTerm
92 N4fab7af8818e4f0db4f2e79019a185c7 rdf:first sg:person.01270604363.00
93 rdf:rest rdf:nil
94 N5eea21c99335433eb7f87a3f1a5f8c22 rdf:first sg:person.01010075001.73
95 rdf:rest N4fab7af8818e4f0db4f2e79019a185c7
96 N6ae7c8b0ff5549fa8d108383c6366198 schema:volumeNumber 24
97 rdf:type schema:PublicationVolume
98 N90830b44844d456ca98cd121f9c4b27d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Proteasome Endopeptidase Complex
100 rdf:type schema:DefinedTerm
101 N94eb46492fb94e90982c4035b5130bf3 rdf:first sg:person.01364003506.87
102 rdf:rest Nbca7770e3cca4e17b729b8ff7fdee851
103 Na595e56eb56943688b146022e13ecd65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Molecular Chaperones
105 rdf:type schema:DefinedTerm
106 Naeb6dbc441334e39a8e5ef6b3b161493 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Nbca7770e3cca4e17b729b8ff7fdee851 rdf:first sg:person.015075056162.29
109 rdf:rest N5eea21c99335433eb7f87a3f1a5f8c22
110 Ncee2562d38bc45d9840383679f7ce71c schema:name doi
111 schema:value 10.1038/s41556-022-00938-4
112 rdf:type schema:PropertyValue
113 Nd1bc20dfd7e143a7b9f6fae0f1783405 rdf:first sg:person.011054657525.60
114 rdf:rest N1d856a76c0cf4a11b0b0883b5f67f2f6
115 Ne4c92b16f0384734ba1d2b7ad72fb602 schema:issueNumber 7
116 rdf:type schema:PublicationIssue
117 Ne65dc5cce53343e889bef5ce70a964d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name RNA, Messenger
119 rdf:type schema:DefinedTerm
120 Ned07a505a6c44212bd132e865dc100ca schema:name pubmed_id
121 schema:value 35739319
122 rdf:type schema:PropertyValue
123 Nf24fbad385aa4004abdc13b69276d2a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Homeostasis
125 rdf:type schema:DefinedTerm
126 Nf44e6ff693864d3280167cd4b6b53496 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Actins
128 rdf:type schema:DefinedTerm
129 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
130 schema:name Biological Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
133 schema:name Biochemistry and Cell Biology
134 rdf:type schema:DefinedTerm
135 sg:grant.8469937 http://pending.schema.org/fundedItem sg:pub.10.1038/s41556-022-00938-4
136 rdf:type schema:MonetaryGrant
137 sg:journal.1021344 schema:issn 1465-7392
138 1476-4679
139 schema:name Nature Cell Biology
140 schema:publisher Springer Nature
141 rdf:type schema:Periodical
142 sg:person.01010075001.73 schema:affiliation grid-institutes:grid.451071.6
143 schema:familyName Zhou
144 schema:givenName Houjiang
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010075001.73
146 rdf:type schema:Person
147 sg:person.011054657525.60 schema:affiliation grid-institutes:grid.451071.6
148 schema:familyName Williams
149 schema:givenName Thomas David
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011054657525.60
151 rdf:type schema:Person
152 sg:person.01270604363.00 schema:affiliation grid-institutes:grid.451071.6
153 schema:familyName Rousseau
154 schema:givenName Adrien
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270604363.00
156 rdf:type schema:Person
157 sg:person.013502115162.41 schema:affiliation grid-institutes:grid.451071.6
158 schema:familyName Cacioppo
159 schema:givenName Roberta
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013502115162.41
161 rdf:type schema:Person
162 sg:person.01364003506.87 schema:affiliation grid-institutes:grid.451071.6
163 schema:familyName Agrotis
164 schema:givenName Alexander
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364003506.87
166 rdf:type schema:Person
167 sg:person.015075056162.29 schema:affiliation grid-institutes:grid.451071.6
168 schema:familyName Black
169 schema:givenName Ailsa
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015075056162.29
171 rdf:type schema:Person
172 sg:pub.10.1038/38015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029070451
173 https://doi.org/10.1038/38015
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/nature08063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051657361
176 https://doi.org/10.1038/nature08063
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nature18943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021103290
179 https://doi.org/10.1038/nature18943
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nrm3958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042361001
182 https://doi.org/10.1038/nrm3958
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/s41580-018-0040-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1105913212
185 https://doi.org/10.1038/s41580-018-0040-z
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/s41580-019-0101-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1111977848
188 https://doi.org/10.1038/s41580-019-0101-y
189 rdf:type schema:CreativeWork
190 grid-institutes:grid.451071.6 schema:alternateName MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
191 schema:name MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
192 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...