Dissecting melanocytes to predict melanoma View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-09-02

AUTHORS

Alicia M. McConnell, Leonard I. Zon

ABSTRACT

With advanced high-throughput technologies, scientists can now use transcriptional signatures to study melanocytes as they become cancer. A new study identifies transcriptional programs at single-cell resolution across platforms and species, which enables prediction of melanoma prognosis and response to immune-checkpoint inhibitor therapy.

PAGES

930-931

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41556-021-00748-0

DOI

http://dx.doi.org/10.1038/s41556-021-00748-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1140838352

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34475537


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Melanocytes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Melanoma", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard Medical School, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Stem Cell Program and Division of Hematology/Oncology, Children\u2019s Hospital Boston, Howard Hughes Medical Institute, Boston, MA, USA", 
            "Harvard Medical School, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McConnell", 
        "givenName": "Alicia M.", 
        "id": "sg:person.014535004715.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014535004715.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Stem Cell Program and Division of Hematology/Oncology, Children\u2019s Hospital Boston, Howard Hughes Medical Institute, Boston, MA, USA", 
            "Harvard Medical School, Boston, MA, USA", 
            "Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zon", 
        "givenName": "Leonard I.", 
        "id": "sg:person.015341736157.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015341736157.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmeth.1315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022155307", 
          "https://doi.org/10.1038/nmeth.1315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-019-14085-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1124121200", 
          "https://doi.org/10.1038/s41467-019-14085-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41556-021-00740-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1140838042", 
          "https://doi.org/10.1038/s41556-021-00740-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s42003-020-0922-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1126885227", 
          "https://doi.org/10.1038/s42003-020-0922-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-09-02", 
    "datePublishedReg": "2021-09-02", 
    "description": "With advanced high-throughput technologies, scientists can now use transcriptional signatures to study melanocytes as they become cancer. A new study identifies transcriptional programs at single-cell resolution across platforms and species, which enables prediction of melanoma prognosis and response to immune-checkpoint inhibitor therapy.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41556-021-00748-0", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2477011", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2435877", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1021344", 
        "issn": [
          "1465-7392", 
          "1476-4679"
        ], 
        "name": "Nature Cell Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "keywords": [
      "advanced high-throughput technologies", 
      "single-cell resolution", 
      "high-throughput technologies", 
      "transcriptional programs", 
      "transcriptional signature", 
      "immune checkpoint inhibitor therapy", 
      "inhibitor therapy", 
      "melanoma prognosis", 
      "melanocytes", 
      "species", 
      "new studies", 
      "prognosis", 
      "therapy", 
      "melanoma", 
      "cancer", 
      "signatures", 
      "response", 
      "study", 
      "program", 
      "scientists", 
      "resolution", 
      "prediction", 
      "platform", 
      "technology"
    ], 
    "name": "Dissecting melanocytes to predict melanoma", 
    "pagination": "930-931", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1140838352"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41556-021-00748-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34475537"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41556-021-00748-0", 
      "https://app.dimensions.ai/details/publication/pub.1140838352"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_919.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41556-021-00748-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41556-021-00748-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41556-021-00748-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41556-021-00748-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41556-021-00748-0'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      21 PREDICATES      58 URIs      44 LITERALS      10 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41556-021-00748-0 schema:about N136f1862d94d4fc19cf3dd9a1d313fde
2 N1448f83b648743378d56c328a07afddf
3 Nd0b1d56a35874a2c914abce41abe8f81
4 anzsrc-for:06
5 anzsrc-for:0601
6 anzsrc-for:11
7 anzsrc-for:1112
8 schema:author N17f6e83a62264297adf042c0e367974e
9 schema:citation sg:pub.10.1038/nmeth.1315
10 sg:pub.10.1038/s41467-019-14085-2
11 sg:pub.10.1038/s41556-021-00740-8
12 sg:pub.10.1038/s42003-020-0922-4
13 schema:datePublished 2021-09-02
14 schema:datePublishedReg 2021-09-02
15 schema:description With advanced high-throughput technologies, scientists can now use transcriptional signatures to study melanocytes as they become cancer. A new study identifies transcriptional programs at single-cell resolution across platforms and species, which enables prediction of melanoma prognosis and response to immune-checkpoint inhibitor therapy.
16 schema:genre article
17 schema:isAccessibleForFree true
18 schema:isPartOf N52684adf67b042c489ef5819ab81d6ac
19 Nc46c127eb538406395d24fd28612b256
20 sg:journal.1021344
21 schema:keywords advanced high-throughput technologies
22 cancer
23 high-throughput technologies
24 immune checkpoint inhibitor therapy
25 inhibitor therapy
26 melanocytes
27 melanoma
28 melanoma prognosis
29 new studies
30 platform
31 prediction
32 prognosis
33 program
34 resolution
35 response
36 scientists
37 signatures
38 single-cell resolution
39 species
40 study
41 technology
42 therapy
43 transcriptional programs
44 transcriptional signature
45 schema:name Dissecting melanocytes to predict melanoma
46 schema:pagination 930-931
47 schema:productId N50b9c7181b31434faf773bb12a3b4d38
48 N5cd777d2673849998da48c63041d9e0a
49 Na388358c3170482685fbb1876de04177
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140838352
51 https://doi.org/10.1038/s41556-021-00748-0
52 schema:sdDatePublished 2022-09-02T16:07
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N0620eaf01a0544eaa07e1a5b40bb5810
55 schema:url https://doi.org/10.1038/s41556-021-00748-0
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0620eaf01a0544eaa07e1a5b40bb5810 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N136f1862d94d4fc19cf3dd9a1d313fde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Melanoma
63 rdf:type schema:DefinedTerm
64 N1448f83b648743378d56c328a07afddf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Melanocytes
66 rdf:type schema:DefinedTerm
67 N17f6e83a62264297adf042c0e367974e rdf:first sg:person.014535004715.24
68 rdf:rest N334e1867772a43cc9255f4b9d480abed
69 N334e1867772a43cc9255f4b9d480abed rdf:first sg:person.015341736157.56
70 rdf:rest rdf:nil
71 N50b9c7181b31434faf773bb12a3b4d38 schema:name doi
72 schema:value 10.1038/s41556-021-00748-0
73 rdf:type schema:PropertyValue
74 N52684adf67b042c489ef5819ab81d6ac schema:issueNumber 9
75 rdf:type schema:PublicationIssue
76 N5cd777d2673849998da48c63041d9e0a schema:name pubmed_id
77 schema:value 34475537
78 rdf:type schema:PropertyValue
79 Na388358c3170482685fbb1876de04177 schema:name dimensions_id
80 schema:value pub.1140838352
81 rdf:type schema:PropertyValue
82 Nc46c127eb538406395d24fd28612b256 schema:volumeNumber 23
83 rdf:type schema:PublicationVolume
84 Nd0b1d56a35874a2c914abce41abe8f81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Humans
86 rdf:type schema:DefinedTerm
87 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
88 schema:name Biological Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
91 schema:name Biochemistry and Cell Biology
92 rdf:type schema:DefinedTerm
93 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
94 schema:name Medical and Health Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
97 schema:name Oncology and Carcinogenesis
98 rdf:type schema:DefinedTerm
99 sg:grant.2435877 http://pending.schema.org/fundedItem sg:pub.10.1038/s41556-021-00748-0
100 rdf:type schema:MonetaryGrant
101 sg:grant.2477011 http://pending.schema.org/fundedItem sg:pub.10.1038/s41556-021-00748-0
102 rdf:type schema:MonetaryGrant
103 sg:journal.1021344 schema:issn 1465-7392
104 1476-4679
105 schema:name Nature Cell Biology
106 schema:publisher Springer Nature
107 rdf:type schema:Periodical
108 sg:person.014535004715.24 schema:affiliation grid-institutes:grid.38142.3c
109 schema:familyName McConnell
110 schema:givenName Alicia M.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014535004715.24
112 rdf:type schema:Person
113 sg:person.015341736157.56 schema:affiliation grid-institutes:grid.38142.3c
114 schema:familyName Zon
115 schema:givenName Leonard I.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015341736157.56
117 rdf:type schema:Person
118 sg:pub.10.1038/nmeth.1315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022155307
119 https://doi.org/10.1038/nmeth.1315
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/s41467-019-14085-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124121200
122 https://doi.org/10.1038/s41467-019-14085-2
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/s41556-021-00740-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140838042
125 https://doi.org/10.1038/s41556-021-00740-8
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/s42003-020-0922-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126885227
128 https://doi.org/10.1038/s42003-020-0922-4
129 rdf:type schema:CreativeWork
130 grid-institutes:grid.38142.3c schema:alternateName Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
131 Harvard Medical School, Boston, MA, USA
132 schema:name Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
133 Harvard Medical School, Boston, MA, USA
134 Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital Boston, Howard Hughes Medical Institute, Boston, MA, USA
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...