Dust/ice mixing in cold regions and solid-state water in the diffuse interstellar medium View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-09-21

AUTHORS

Alexey Potapov, Jeroen Bouwman, Cornelia Jäger, Thomas Henning

ABSTRACT

Whether ice in cold cosmic environments is physically separated from the silicate dust or mixed with individual silicate moieties is not known. However, different grain models give very different compositions and temperatures of grains. The aim of the present study is to compare the mid-infrared spectra of laboratory silicate grain/water ice mixtures with astronomical observations to evaluate the presence of dust/ice mixtures in interstellar and circumstellar environments. The laboratory data can explain the observations, assuming reasonable mass-averaged temperatures for the protostellar envelopes and protoplanetary disks, demonstrating that a substantial fraction of water ice may be mixed with silicate grains. On the basis of the combination of laboratory data and infrared observations, we provide evidence of the presence of solid-state water in the diffuse interstellar medium. Our results have implications for future laboratory studies investigating cosmic dust grain analogues and for future observations trying to identify the structure, composition and temperature of grains in different astrophysical environments. More... »

PAGES

78-85

References to SciGraph publications

  • 2008-08-07. Perspectives on Interstellar Dust Inside and Outside of the Heliosphere in SPACE SCIENCE REVIEWS
  • 1995-12. Dust metamorphosis in the galaxy in THE ASTRONOMY AND ASTROPHYSICS REVIEW
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41550-020-01214-x

    DOI

    http://dx.doi.org/10.1038/s41550-020-01214-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1131003596


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Jena, Germany", 
              "id": "http://www.grid.ac/institutes/grid.9613.d", 
              "name": [
                "Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Jena, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Potapov", 
            "givenName": "Alexey", 
            "id": "sg:person.0774356567.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774356567.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Astronomy, Heidelberg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.429508.2", 
              "name": [
                "Max Planck Institute for Astronomy, Heidelberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bouwman", 
            "givenName": "Jeroen", 
            "id": "sg:person.010750415021.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010750415021.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Jena, Germany", 
              "id": "http://www.grid.ac/institutes/grid.9613.d", 
              "name": [
                "Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Jena, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "J\u00e4ger", 
            "givenName": "Cornelia", 
            "id": "sg:person.0703742361.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703742361.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Astronomy, Heidelberg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.429508.2", 
              "name": [
                "Max Planck Institute for Astronomy, Heidelberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Henning", 
            "givenName": "Thomas", 
            "id": "sg:person.015136145631.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015136145631.64"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11214-008-9411-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028290493", 
              "https://doi.org/10.1007/s11214-008-9411-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00873686", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050330999", 
              "https://doi.org/10.1007/bf00873686"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-09-21", 
        "datePublishedReg": "2020-09-21", 
        "description": "Whether ice in cold cosmic environments is physically separated from the silicate dust or mixed with individual silicate moieties is not known. However, different grain models give very different compositions and temperatures of grains. The aim of the present study is to compare the mid-infrared spectra of laboratory silicate grain/water ice mixtures with astronomical observations to evaluate the presence of dust/ice mixtures in interstellar and circumstellar environments. The laboratory data can explain the observations, assuming reasonable mass-averaged temperatures for the protostellar envelopes and protoplanetary disks, demonstrating that a substantial fraction of water ice may be mixed with silicate grains. On the basis of the combination of laboratory data and infrared observations, we provide evidence of the presence of solid-state water in the diffuse interstellar medium. Our results have implications for future laboratory studies investigating cosmic dust grain analogues and for future observations trying to identify the structure, composition and temperature of grains in different astrophysical environments.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41550-020-01214-x", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8585317", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1290451", 
            "issn": [
              "2397-3366"
            ], 
            "name": "Nature Astronomy", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "keywords": [
          "diffuse interstellar medium", 
          "solid-state water", 
          "interstellar medium", 
          "different astrophysical environments", 
          "different grain models", 
          "ice mixtures", 
          "dust grain analogues", 
          "mid-infrared spectra", 
          "water-ice mixture", 
          "astrophysical environments", 
          "astronomical observations", 
          "circumstellar environment", 
          "protoplanetary disks", 
          "infrared observations", 
          "cosmic environment", 
          "future observations", 
          "silicate dust", 
          "protostellar envelopes", 
          "grain analogues", 
          "silicate grains", 
          "water ice", 
          "silicate moieties", 
          "future laboratory studies", 
          "substantial fraction", 
          "temperature", 
          "mass-average temperature", 
          "grain model", 
          "spectra", 
          "different compositions", 
          "disk", 
          "dust", 
          "temperature of grain", 
          "grains", 
          "ice", 
          "envelope", 
          "structure", 
          "medium", 
          "composition", 
          "region", 
          "mixture", 
          "fraction", 
          "presence", 
          "cold regions", 
          "data", 
          "model", 
          "environment", 
          "results", 
          "water", 
          "combination", 
          "analogues", 
          "basis", 
          "moiety", 
          "laboratory data", 
          "study", 
          "laboratory studies", 
          "evidence", 
          "implications", 
          "present study", 
          "aim", 
          "observations", 
          "cold cosmic environments", 
          "individual silicate moieties", 
          "laboratory silicate grain/water ice mixtures", 
          "silicate grain/water ice mixtures", 
          "grain/water ice mixtures", 
          "dust/ice mixtures", 
          "reasonable mass-averaged temperatures", 
          "cosmic dust grain analogues", 
          "Dust/ice"
        ], 
        "name": "Dust/ice mixing in cold regions and solid-state water in the diffuse interstellar medium", 
        "pagination": "78-85", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1131003596"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41550-020-01214-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41550-020-01214-x", 
          "https://app.dimensions.ai/details/publication/pub.1131003596"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_861.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41550-020-01214-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41550-020-01214-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41550-020-01214-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41550-020-01214-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41550-020-01214-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    160 TRIPLES      22 PREDICATES      96 URIs      86 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41550-020-01214-x schema:about anzsrc-for:04
    2 anzsrc-for:0406
    3 schema:author Ne5df36b2d01c4385a36f8dd70b3f07c2
    4 schema:citation sg:pub.10.1007/bf00873686
    5 sg:pub.10.1007/s11214-008-9411-7
    6 schema:datePublished 2020-09-21
    7 schema:datePublishedReg 2020-09-21
    8 schema:description Whether ice in cold cosmic environments is physically separated from the silicate dust or mixed with individual silicate moieties is not known. However, different grain models give very different compositions and temperatures of grains. The aim of the present study is to compare the mid-infrared spectra of laboratory silicate grain/water ice mixtures with astronomical observations to evaluate the presence of dust/ice mixtures in interstellar and circumstellar environments. The laboratory data can explain the observations, assuming reasonable mass-averaged temperatures for the protostellar envelopes and protoplanetary disks, demonstrating that a substantial fraction of water ice may be mixed with silicate grains. On the basis of the combination of laboratory data and infrared observations, we provide evidence of the presence of solid-state water in the diffuse interstellar medium. Our results have implications for future laboratory studies investigating cosmic dust grain analogues and for future observations trying to identify the structure, composition and temperature of grains in different astrophysical environments.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree true
    12 schema:isPartOf N8ac155fa34834221a56555355fc7d558
    13 Na4d41c73e99b48e7bec07235a93a3be6
    14 sg:journal.1290451
    15 schema:keywords Dust/ice
    16 aim
    17 analogues
    18 astronomical observations
    19 astrophysical environments
    20 basis
    21 circumstellar environment
    22 cold cosmic environments
    23 cold regions
    24 combination
    25 composition
    26 cosmic dust grain analogues
    27 cosmic environment
    28 data
    29 different astrophysical environments
    30 different compositions
    31 different grain models
    32 diffuse interstellar medium
    33 disk
    34 dust
    35 dust grain analogues
    36 dust/ice mixtures
    37 envelope
    38 environment
    39 evidence
    40 fraction
    41 future laboratory studies
    42 future observations
    43 grain analogues
    44 grain model
    45 grain/water ice mixtures
    46 grains
    47 ice
    48 ice mixtures
    49 implications
    50 individual silicate moieties
    51 infrared observations
    52 interstellar medium
    53 laboratory data
    54 laboratory silicate grain/water ice mixtures
    55 laboratory studies
    56 mass-average temperature
    57 medium
    58 mid-infrared spectra
    59 mixture
    60 model
    61 moiety
    62 observations
    63 presence
    64 present study
    65 protoplanetary disks
    66 protostellar envelopes
    67 reasonable mass-averaged temperatures
    68 region
    69 results
    70 silicate dust
    71 silicate grain/water ice mixtures
    72 silicate grains
    73 silicate moieties
    74 solid-state water
    75 spectra
    76 structure
    77 study
    78 substantial fraction
    79 temperature
    80 temperature of grain
    81 water
    82 water ice
    83 water-ice mixture
    84 schema:name Dust/ice mixing in cold regions and solid-state water in the diffuse interstellar medium
    85 schema:pagination 78-85
    86 schema:productId N9c8742cf5c004965a15d6f5e1b0db0b8
    87 Ncbd647650442422f9e02a8f3f9a222a2
    88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131003596
    89 https://doi.org/10.1038/s41550-020-01214-x
    90 schema:sdDatePublished 2022-01-01T18:55
    91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    92 schema:sdPublisher N37053bc49d774951b066b534e2fd3e1b
    93 schema:url https://doi.org/10.1038/s41550-020-01214-x
    94 sgo:license sg:explorer/license/
    95 sgo:sdDataset articles
    96 rdf:type schema:ScholarlyArticle
    97 N18df8c2d61214d2a8dc9de50001ac186 rdf:first sg:person.0703742361.63
    98 rdf:rest N6784c4fa1fed4ef78769ef19930575ed
    99 N37053bc49d774951b066b534e2fd3e1b schema:name Springer Nature - SN SciGraph project
    100 rdf:type schema:Organization
    101 N3717460aa65b47f198afc98d3a5adf91 rdf:first sg:person.010750415021.87
    102 rdf:rest N18df8c2d61214d2a8dc9de50001ac186
    103 N6784c4fa1fed4ef78769ef19930575ed rdf:first sg:person.015136145631.64
    104 rdf:rest rdf:nil
    105 N8ac155fa34834221a56555355fc7d558 schema:volumeNumber 5
    106 rdf:type schema:PublicationVolume
    107 N9c8742cf5c004965a15d6f5e1b0db0b8 schema:name doi
    108 schema:value 10.1038/s41550-020-01214-x
    109 rdf:type schema:PropertyValue
    110 Na4d41c73e99b48e7bec07235a93a3be6 schema:issueNumber 1
    111 rdf:type schema:PublicationIssue
    112 Ncbd647650442422f9e02a8f3f9a222a2 schema:name dimensions_id
    113 schema:value pub.1131003596
    114 rdf:type schema:PropertyValue
    115 Ne5df36b2d01c4385a36f8dd70b3f07c2 rdf:first sg:person.0774356567.34
    116 rdf:rest N3717460aa65b47f198afc98d3a5adf91
    117 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    118 schema:name Earth Sciences
    119 rdf:type schema:DefinedTerm
    120 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Physical Geography and Environmental Geoscience
    122 rdf:type schema:DefinedTerm
    123 sg:grant.8585317 http://pending.schema.org/fundedItem sg:pub.10.1038/s41550-020-01214-x
    124 rdf:type schema:MonetaryGrant
    125 sg:journal.1290451 schema:issn 2397-3366
    126 schema:name Nature Astronomy
    127 schema:publisher Springer Nature
    128 rdf:type schema:Periodical
    129 sg:person.010750415021.87 schema:affiliation grid-institutes:grid.429508.2
    130 schema:familyName Bouwman
    131 schema:givenName Jeroen
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010750415021.87
    133 rdf:type schema:Person
    134 sg:person.015136145631.64 schema:affiliation grid-institutes:grid.429508.2
    135 schema:familyName Henning
    136 schema:givenName Thomas
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015136145631.64
    138 rdf:type schema:Person
    139 sg:person.0703742361.63 schema:affiliation grid-institutes:grid.9613.d
    140 schema:familyName Jäger
    141 schema:givenName Cornelia
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703742361.63
    143 rdf:type schema:Person
    144 sg:person.0774356567.34 schema:affiliation grid-institutes:grid.9613.d
    145 schema:familyName Potapov
    146 schema:givenName Alexey
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774356567.34
    148 rdf:type schema:Person
    149 sg:pub.10.1007/bf00873686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050330999
    150 https://doi.org/10.1007/bf00873686
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s11214-008-9411-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028290493
    153 https://doi.org/10.1007/s11214-008-9411-7
    154 rdf:type schema:CreativeWork
    155 grid-institutes:grid.429508.2 schema:alternateName Max Planck Institute for Astronomy, Heidelberg, Germany
    156 schema:name Max Planck Institute for Astronomy, Heidelberg, Germany
    157 rdf:type schema:Organization
    158 grid-institutes:grid.9613.d schema:alternateName Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Jena, Germany
    159 schema:name Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Jena, Germany
    160 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...