Experimental characterization of the energetics of low-temperature surface reactions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-25

AUTHORS

Thomas K. Henning, Serge A. Krasnokutski

ABSTRACT

Astrochemical reactions on the surfaces of dust grains, for instance, are thought to be responsible for the formation of complex organic molecules, which are of potential importance for the origin of life. In the situation where the chemical composition of dust surfaces is not precisely known, knowledge of the fundamental reaction properties gains significance. Here we describe an experimental technique that can be used to measure the energy released in reactions involving of a single pair of reactants. These data can be directly compared with the results of quantum chemical computations leading to unequivocal conclusions regarding the reaction pathways and the presence of energy barriers. It allows the prediction of the outcomes of astrochemical surface reactions with higher accuracy compared with that achieved based on gas-phase studies. However, for the highest accuracy, some understanding of the catalytic influence of specific surfaces on the reactions is required. The method was applied to study the reactions of C atoms with H2, O2 and C2H2. The formation of HCH, CO + O and triplet cyclic-C3H2 products has been revealed, correspondingly. More... »

PAGES

568-573

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41550-019-0729-8

DOI

http://dx.doi.org/10.1038/s41550-019-0729-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112971026


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Theoretical and Computational Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Astronomy, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.429508.2", 
          "name": [
            "Max Planck Institute for Astronomy, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henning", 
        "givenName": "Thomas K.", 
        "id": "sg:person.015136145631.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015136145631.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory Astrophysics Group of the Max Planck Institute for Astronomy, Friedrich Schiller University, Jena, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Laboratory Astrophysics Group of the Max Planck Institute for Astronomy, Friedrich Schiller University, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krasnokutski", 
        "givenName": "Serge A.", 
        "id": "sg:person.0703216175.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703216175.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature19320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045115292", 
          "https://doi.org/10.1038/nature19320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00172535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007444980", 
          "https://doi.org/10.1007/bf00172535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/197971a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047858647", 
          "https://doi.org/10.1038/197971a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00214-013-1415-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000057243", 
          "https://doi.org/10.1007/s00214-013-1415-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-25", 
    "datePublishedReg": "2019-03-25", 
    "description": "Astrochemical reactions on the surfaces of dust grains, for instance, are thought to be responsible for the formation of complex organic molecules, which are of potential importance for the origin of life. In the situation where the chemical composition of dust surfaces is not precisely known, knowledge of the fundamental reaction properties gains significance. Here we describe an experimental technique that can be used to measure the energy released in reactions involving of a single pair of reactants. These data can be directly compared with the results of quantum chemical computations leading to unequivocal conclusions regarding the reaction pathways and the presence of energy barriers. It allows the prediction of the outcomes of astrochemical surface reactions with higher accuracy compared with that achieved based on gas-phase studies. However, for the highest accuracy, some understanding of the catalytic influence of specific surfaces on the reactions is required. The method was applied to study the reactions of C atoms with H2, O2 and C2H2. The formation of HCH, CO\u2009+\u2009O and triplet cyclic-C3H2 products has been revealed, correspondingly.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41550-019-0729-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1290451", 
        "issn": [
          "2397-3366"
        ], 
        "name": "Nature Astronomy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "surface reactions", 
      "quantum chemical computations", 
      "gas-phase studies", 
      "complex organic molecules", 
      "chemical computations", 
      "organic molecules", 
      "origin of life", 
      "astrochemical reactions", 
      "reaction pathways", 
      "catalytic influence", 
      "reaction properties", 
      "energy barrier", 
      "specific surface", 
      "chemical composition", 
      "dust surface", 
      "reaction", 
      "experimental techniques", 
      "surface", 
      "reactants", 
      "formation", 
      "C2H2", 
      "molecules", 
      "atoms", 
      "CO", 
      "H2", 
      "O2", 
      "experimental characterization", 
      "energetics", 
      "characterization", 
      "HCH", 
      "properties", 
      "products", 
      "composition", 
      "energy", 
      "dust grains", 
      "presence", 
      "unequivocal conclusions", 
      "technique", 
      "method", 
      "potential importance", 
      "barriers", 
      "pairs", 
      "influence", 
      "pathway", 
      "single pair", 
      "origin", 
      "results", 
      "study", 
      "grains", 
      "high accuracy", 
      "importance", 
      "understanding", 
      "prediction", 
      "accuracy", 
      "data", 
      "computation", 
      "instances", 
      "significance", 
      "knowledge", 
      "life", 
      "conclusion", 
      "situation", 
      "outcomes", 
      "fundamental reaction properties", 
      "astrochemical surface reactions", 
      "formation of HCH", 
      "cyclic-C3H2 products", 
      "low-temperature surface reactions"
    ], 
    "name": "Experimental characterization of the energetics of low-temperature surface reactions", 
    "pagination": "568-573", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112971026"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41550-019-0729-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41550-019-0729-8", 
      "https://app.dimensions.ai/details/publication/pub.1112971026"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_805.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41550-019-0729-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41550-019-0729-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41550-019-0729-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41550-019-0729-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41550-019-0729-8'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      22 PREDICATES      98 URIs      85 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41550-019-0729-8 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:0307
4 schema:author Nebdf43b795ea4cfc856310954be6dc93
5 schema:citation sg:pub.10.1007/bf00172535
6 sg:pub.10.1007/s00214-013-1415-z
7 sg:pub.10.1038/197971a0
8 sg:pub.10.1038/nature19320
9 schema:datePublished 2019-03-25
10 schema:datePublishedReg 2019-03-25
11 schema:description Astrochemical reactions on the surfaces of dust grains, for instance, are thought to be responsible for the formation of complex organic molecules, which are of potential importance for the origin of life. In the situation where the chemical composition of dust surfaces is not precisely known, knowledge of the fundamental reaction properties gains significance. Here we describe an experimental technique that can be used to measure the energy released in reactions involving of a single pair of reactants. These data can be directly compared with the results of quantum chemical computations leading to unequivocal conclusions regarding the reaction pathways and the presence of energy barriers. It allows the prediction of the outcomes of astrochemical surface reactions with higher accuracy compared with that achieved based on gas-phase studies. However, for the highest accuracy, some understanding of the catalytic influence of specific surfaces on the reactions is required. The method was applied to study the reactions of C atoms with H2, O2 and C2H2. The formation of HCH, CO + O and triplet cyclic-C3H2 products has been revealed, correspondingly.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N1b39ab9017464355924df16863438c2d
16 N6b6d4a659fb0489e91811e0a6f300767
17 sg:journal.1290451
18 schema:keywords C2H2
19 CO
20 H2
21 HCH
22 O2
23 accuracy
24 astrochemical reactions
25 astrochemical surface reactions
26 atoms
27 barriers
28 catalytic influence
29 characterization
30 chemical composition
31 chemical computations
32 complex organic molecules
33 composition
34 computation
35 conclusion
36 cyclic-C3H2 products
37 data
38 dust grains
39 dust surface
40 energetics
41 energy
42 energy barrier
43 experimental characterization
44 experimental techniques
45 formation
46 formation of HCH
47 fundamental reaction properties
48 gas-phase studies
49 grains
50 high accuracy
51 importance
52 influence
53 instances
54 knowledge
55 life
56 low-temperature surface reactions
57 method
58 molecules
59 organic molecules
60 origin
61 origin of life
62 outcomes
63 pairs
64 pathway
65 potential importance
66 prediction
67 presence
68 products
69 properties
70 quantum chemical computations
71 reactants
72 reaction
73 reaction pathways
74 reaction properties
75 results
76 significance
77 single pair
78 situation
79 specific surface
80 study
81 surface
82 surface reactions
83 technique
84 understanding
85 unequivocal conclusions
86 schema:name Experimental characterization of the energetics of low-temperature surface reactions
87 schema:pagination 568-573
88 schema:productId N28fd3d196f8e482290d7b023597a568b
89 Na0185dd0a0fa4de3a90a36375bd7ef7c
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112971026
91 https://doi.org/10.1038/s41550-019-0729-8
92 schema:sdDatePublished 2022-01-01T18:53
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher N0965c92d2e3c4a3696634e1f7d1c9622
95 schema:url https://doi.org/10.1038/s41550-019-0729-8
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N0965c92d2e3c4a3696634e1f7d1c9622 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 N1b39ab9017464355924df16863438c2d schema:issueNumber 6
102 rdf:type schema:PublicationIssue
103 N28fd3d196f8e482290d7b023597a568b schema:name dimensions_id
104 schema:value pub.1112971026
105 rdf:type schema:PropertyValue
106 N5571d7a6a5cf495d84b5c719d17fa251 rdf:first sg:person.0703216175.21
107 rdf:rest rdf:nil
108 N6b6d4a659fb0489e91811e0a6f300767 schema:volumeNumber 3
109 rdf:type schema:PublicationVolume
110 Na0185dd0a0fa4de3a90a36375bd7ef7c schema:name doi
111 schema:value 10.1038/s41550-019-0729-8
112 rdf:type schema:PropertyValue
113 Nebdf43b795ea4cfc856310954be6dc93 rdf:first sg:person.015136145631.64
114 rdf:rest N5571d7a6a5cf495d84b5c719d17fa251
115 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
116 schema:name Chemical Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
119 schema:name Physical Chemistry (incl. Structural)
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
122 schema:name Theoretical and Computational Chemistry
123 rdf:type schema:DefinedTerm
124 sg:journal.1290451 schema:issn 2397-3366
125 schema:name Nature Astronomy
126 schema:publisher Springer Nature
127 rdf:type schema:Periodical
128 sg:person.015136145631.64 schema:affiliation grid-institutes:grid.429508.2
129 schema:familyName Henning
130 schema:givenName Thomas K.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015136145631.64
132 rdf:type schema:Person
133 sg:person.0703216175.21 schema:affiliation grid-institutes:grid.9613.d
134 schema:familyName Krasnokutski
135 schema:givenName Serge A.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703216175.21
137 rdf:type schema:Person
138 sg:pub.10.1007/bf00172535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007444980
139 https://doi.org/10.1007/bf00172535
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s00214-013-1415-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1000057243
142 https://doi.org/10.1007/s00214-013-1415-z
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/197971a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047858647
145 https://doi.org/10.1038/197971a0
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nature19320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045115292
148 https://doi.org/10.1038/nature19320
149 rdf:type schema:CreativeWork
150 grid-institutes:grid.429508.2 schema:alternateName Max Planck Institute for Astronomy, Heidelberg, Germany
151 schema:name Max Planck Institute for Astronomy, Heidelberg, Germany
152 rdf:type schema:Organization
153 grid-institutes:grid.9613.d schema:alternateName Laboratory Astrophysics Group of the Max Planck Institute for Astronomy, Friedrich Schiller University, Jena, Germany
154 schema:name Laboratory Astrophysics Group of the Max Planck Institute for Astronomy, Friedrich Schiller University, Jena, Germany
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...