Multi-scale, whole-system models of liver metabolic adaptation to fat and sugar in non-alcoholic fatty liver disease View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Elaina M. Maldonado, Ciarán P. Fisher, Dawn J. Mazzatti, Amy L. Barber, Marcus J. Tindall, Nicholas J. Plant, Andrzej M. Kierzek, J. Bernadette Moore

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a serious public health issue associated with high fat, high sugar diets. However, the molecular mechanisms mediating NAFLD pathogenesis are only partially understood. Here we adopt an iterative multi-scale, systems biology approach coupled to in vitro experimentation to investigate the roles of sugar and fat metabolism in NAFLD pathogenesis. The use of fructose as a sweetening agent is controversial; to explore this, we developed a predictive model of human monosaccharide transport, signalling and metabolism. The resulting quantitative model comprising a kinetic model describing monosaccharide transport and insulin signalling integrated with a hepatocyte-specific genome-scale metabolic network (GSMN). Differential kinetics for the utilisation of glucose and fructose were predicted, but the resultant triacylglycerol production was predicted to be similar for monosaccharides; these predictions were verified by in vitro data. The role of physiological adaptation to lipid overload was explored through the comprehensive reconstruction of the peroxisome proliferator activated receptor alpha (PPARα) regulome integrated with a hepatocyte-specific GSMN. The resulting qualitative model reproduced metabolic responses to increased fatty acid levels and mimicked lipid loading in vitro. The model predicted that activation of PPARα by lipids produces a biphasic response, which initially exacerbates steatosis. Our data support the evidence that it is the quantity of sugar rather than the type that is critical in driving the steatotic response. Furthermore, we predict PPARα-mediated adaptations to hepatic lipid overload, shedding light on potential challenges for the use of PPARα agonists to treat NAFLD. More... »

PAGES

33

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41540-018-0070-3

DOI

http://dx.doi.org/10.1038/s41540-018-0070-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106160279

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30131870


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Surrey", 
          "id": "https://www.grid.ac/institutes/grid.5475.3", 
          "name": [
            "School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7XH, Surrey, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maldonado", 
        "givenName": "Elaina M.", 
        "id": "sg:person.014500336037.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014500336037.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, S1 2BJ, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fisher", 
        "givenName": "Ciar\u00e1n P.", 
        "id": "sg:person.01302377124.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302377124.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Procter & Gamble (United States)", 
          "id": "https://www.grid.ac/institutes/grid.418758.7", 
          "name": [
            "Proctor & Gamble, 45224, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mazzatti", 
        "givenName": "Dawn J.", 
        "id": "sg:person.01124554013.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124554013.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Surrey", 
          "id": "https://www.grid.ac/institutes/grid.5475.3", 
          "name": [
            "School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7XH, Surrey, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barber", 
        "givenName": "Amy L.", 
        "id": "sg:person.011605160213.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011605160213.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Reading", 
          "id": "https://www.grid.ac/institutes/grid.9435.b", 
          "name": [
            "Department of Mathematics and Statistics, University of Reading, RG6 6AX, Berkshire, UK", 
            "Institute of Cardiovascular and Metabolic Research, University of Reading, RG6 6UR, Berkshire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tindall", 
        "givenName": "Marcus J.", 
        "id": "sg:person.01363621304.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363621304.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Leeds", 
          "id": "https://www.grid.ac/institutes/grid.9909.9", 
          "name": [
            "School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7XH, Surrey, UK", 
            "Faculty of Biological Sciences, University of Leeds, LS2 9JT, Leeds, West Yorkshire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Plant", 
        "givenName": "Nicholas J.", 
        "id": "sg:person.01350512324.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350512324.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Surrey", 
          "id": "https://www.grid.ac/institutes/grid.5475.3", 
          "name": [
            "School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7XH, Surrey, UK", 
            "Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, S1 2BJ, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kierzek", 
        "givenName": "Andrzej M.", 
        "id": "sg:person.01141137160.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141137160.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Leeds", 
          "id": "https://www.grid.ac/institutes/grid.9909.9", 
          "name": [
            "School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7XH, Surrey, UK", 
            "School of Food Science & Nutrition, University of Leeds, LS2 9JT, Leeds, West Yorkshire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moore", 
        "givenName": "J. Bernadette", 
        "id": "sg:person.0617715150.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617715150.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1752-0509-6-114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000375338", 
          "https://doi.org/10.1186/1752-0509-6-114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m409072200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001924904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/flgastro-2013-100403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001956040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.21499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003215960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-31131-4_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007331389", 
          "https://doi.org/10.1007/978-3-642-31131-4_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2010/325183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011152122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mnfr.201500635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011585685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mco.0000000000000289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012220545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mco.0000000000000289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012220545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2015.02.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012358765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013096583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0029665109992217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013391965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1517/13543784.2015.1006359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014013466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-3341-9_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014046042", 
          "https://doi.org/10.1007/978-1-4939-3341-9_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014167900", 
          "https://doi.org/10.1038/ncomms2799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014185979", 
          "https://doi.org/10.1038/nbt.2488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biochi.2016.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014349699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/ajcn.114.086314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016127726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2012.04.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016916712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00394-016-1340-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020038173", 
          "https://doi.org/10.1007/s00394-016-1340-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00394-016-1340-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020038173", 
          "https://doi.org/10.1007/s00394-016-1340-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2012/107434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024222198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m112.399899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024791597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/npjsba.2016.32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025001485", 
          "https://doi.org/10.1038/npjsba.2016.32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1218595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025191587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0610772104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027487019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.f6847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027813737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2010.62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029495220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2010.62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029495220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2010.62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029495220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cbi.2013.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029800045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.f6846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033349417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/nu6125679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033626746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1004899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034728685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m109.051052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035254614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2040-1124.2011.00111.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035658293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1476-511x-10-20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038000406", 
          "https://doi.org/10.1186/1476-511x-10-20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038102846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.26672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038298336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejcn.2014.8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043319998", 
          "https://doi.org/10.1038/ejcn.2014.8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbr069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045058456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045416438", 
          "https://doi.org/10.1038/ncomms4083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/03602532.2011.577781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045966142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0099245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046064958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0058895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047354297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molmet.2014.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048276045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/jcs.037630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048368468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/jaha.114.001700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050630701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051807853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051807853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.h4962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051996787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.h4962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051996787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpgi.00188.2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063192798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3748/wjg.v20.i41.15070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071371740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4254/wjh.v8.i20.838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072403692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15252/msb.20167422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084343672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15252/msb.20167422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084343672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pharmthera.2017.05.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085566241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmjgast-2017-000139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085953245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/psp4.12230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091082370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.j4340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091865336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.j4340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091865336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2017.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100857725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2017.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100857725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2017.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100857725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2017.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100857725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12953-018-0131-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101037316", 
          "https://doi.org/10.1186/s12953-018-0131-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Non-alcoholic fatty liver disease (NAFLD) is a serious public health issue associated with high fat, high sugar diets. However, the molecular mechanisms mediating NAFLD pathogenesis are only partially understood. Here we adopt an iterative multi-scale, systems biology approach coupled to in vitro experimentation to investigate the roles of sugar and fat metabolism in NAFLD pathogenesis. The use of fructose as a sweetening agent is controversial; to explore this, we developed a predictive model of human monosaccharide transport, signalling and metabolism. The resulting quantitative model comprising a kinetic model describing monosaccharide transport and insulin signalling integrated with a hepatocyte-specific genome-scale metabolic network (GSMN). Differential kinetics for the utilisation of glucose and fructose were predicted, but the resultant triacylglycerol production was predicted to be similar for monosaccharides; these predictions were verified by in vitro data. The role of physiological adaptation to lipid overload was explored through the comprehensive reconstruction of the peroxisome proliferator activated receptor alpha (PPAR\u03b1) regulome integrated with a hepatocyte-specific GSMN. The resulting qualitative model reproduced metabolic responses to increased fatty acid levels and mimicked lipid loading in vitro. The model predicted that activation of PPAR\u03b1 by lipids produces a biphasic response, which initially exacerbates steatosis. Our data support the evidence that it is the quantity of sugar rather than the type that is critical in driving the steatotic response. Furthermore, we predict PPAR\u03b1-mediated adaptations to hepatic lipid overload, shedding light on potential challenges for the use of PPAR\u03b1 agonists to treat NAFLD.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41540-018-0070-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2785367", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3498282", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1053217", 
        "issn": [
          "2056-7189"
        ], 
        "name": "npj Systems Biology and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Multi-scale, whole-system models of liver metabolic adaptation to fat and sugar in non-alcoholic fatty liver disease", 
    "pagination": "33", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "93b6eaadc71c3165e93d3e38a6b8f494be33f640b3c9b0dc9abd15b55f85843b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30131870"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101677786"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41540-018-0070-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106160279"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41540-018-0070-3", 
      "https://app.dimensions.ai/details/publication/pub.1106160279"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000566.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41540-018-0070-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41540-018-0070-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41540-018-0070-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41540-018-0070-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41540-018-0070-3'


 

This table displays all metadata directly associated to this object as RDF triples.

315 TRIPLES      21 PREDICATES      85 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41540-018-0070-3 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N0e4f1a2517324f73a05c06aee2599624
4 schema:citation sg:pub.10.1007/978-1-4939-3341-9_2
5 sg:pub.10.1007/978-3-642-31131-4_22
6 sg:pub.10.1007/s00394-016-1340-8
7 sg:pub.10.1038/ejcn.2014.8
8 sg:pub.10.1038/nbt.2488
9 sg:pub.10.1038/ncomms2799
10 sg:pub.10.1038/ncomms4083
11 sg:pub.10.1038/npjsba.2016.32
12 sg:pub.10.1186/1476-511x-10-20
13 sg:pub.10.1186/1752-0509-6-114
14 sg:pub.10.1186/s12953-018-0131-y
15 https://doi.org/10.1002/hep.21499
16 https://doi.org/10.1002/hep.26672
17 https://doi.org/10.1002/mnfr.201500635
18 https://doi.org/10.1002/psp4.12230
19 https://doi.org/10.1016/j.biochi.2016.11.009
20 https://doi.org/10.1016/j.cbi.2013.11.006
21 https://doi.org/10.1016/j.cmet.2017.12.016
22 https://doi.org/10.1016/j.jhep.2015.02.019
23 https://doi.org/10.1016/j.molcel.2012.04.018
24 https://doi.org/10.1016/j.molmet.2014.02.002
25 https://doi.org/10.1016/j.pharmthera.2017.05.011
26 https://doi.org/10.1017/s0029665109992217
27 https://doi.org/10.1038/msb.2010.62
28 https://doi.org/10.1038/msb4100177
29 https://doi.org/10.1073/pnas.0610772104
30 https://doi.org/10.1074/jbc.m109.051052
31 https://doi.org/10.1074/jbc.m112.399899
32 https://doi.org/10.1074/jbc.m409072200
33 https://doi.org/10.1093/bib/bbr069
34 https://doi.org/10.1093/bioinformatics/btl485
35 https://doi.org/10.1093/bioinformatics/btt552
36 https://doi.org/10.1097/mco.0000000000000289
37 https://doi.org/10.1111/j.2040-1124.2011.00111.x
38 https://doi.org/10.1126/science.1218595
39 https://doi.org/10.1136/bmj.f6846
40 https://doi.org/10.1136/bmj.f6847
41 https://doi.org/10.1136/bmj.h4962
42 https://doi.org/10.1136/bmj.j4340
43 https://doi.org/10.1136/bmjgast-2017-000139
44 https://doi.org/10.1136/flgastro-2013-100403
45 https://doi.org/10.1152/ajpgi.00188.2015
46 https://doi.org/10.1155/2010/325183
47 https://doi.org/10.1155/2012/107434
48 https://doi.org/10.1161/jaha.114.001700
49 https://doi.org/10.1242/jcs.037630
50 https://doi.org/10.1371/journal.pcbi.1004899
51 https://doi.org/10.1371/journal.pone.0058895
52 https://doi.org/10.1371/journal.pone.0099245
53 https://doi.org/10.1517/13543784.2015.1006359
54 https://doi.org/10.15252/msb.20167422
55 https://doi.org/10.3109/03602532.2011.577781
56 https://doi.org/10.3390/nu6125679
57 https://doi.org/10.3748/wjg.v20.i41.15070
58 https://doi.org/10.3945/ajcn.114.086314
59 https://doi.org/10.4254/wjh.v8.i20.838
60 schema:datePublished 2018-12
61 schema:datePublishedReg 2018-12-01
62 schema:description Non-alcoholic fatty liver disease (NAFLD) is a serious public health issue associated with high fat, high sugar diets. However, the molecular mechanisms mediating NAFLD pathogenesis are only partially understood. Here we adopt an iterative multi-scale, systems biology approach coupled to in vitro experimentation to investigate the roles of sugar and fat metabolism in NAFLD pathogenesis. The use of fructose as a sweetening agent is controversial; to explore this, we developed a predictive model of human monosaccharide transport, signalling and metabolism. The resulting quantitative model comprising a kinetic model describing monosaccharide transport and insulin signalling integrated with a hepatocyte-specific genome-scale metabolic network (GSMN). Differential kinetics for the utilisation of glucose and fructose were predicted, but the resultant triacylglycerol production was predicted to be similar for monosaccharides; these predictions were verified by in vitro data. The role of physiological adaptation to lipid overload was explored through the comprehensive reconstruction of the peroxisome proliferator activated receptor alpha (PPARα) regulome integrated with a hepatocyte-specific GSMN. The resulting qualitative model reproduced metabolic responses to increased fatty acid levels and mimicked lipid loading in vitro. The model predicted that activation of PPARα by lipids produces a biphasic response, which initially exacerbates steatosis. Our data support the evidence that it is the quantity of sugar rather than the type that is critical in driving the steatotic response. Furthermore, we predict PPARα-mediated adaptations to hepatic lipid overload, shedding light on potential challenges for the use of PPARα agonists to treat NAFLD.
63 schema:genre research_article
64 schema:inLanguage en
65 schema:isAccessibleForFree true
66 schema:isPartOf N7a9d22fd3c3f452eb40ee445b7d5e74b
67 Nffa2412f024247449639d259c7017ff4
68 sg:journal.1053217
69 schema:name Multi-scale, whole-system models of liver metabolic adaptation to fat and sugar in non-alcoholic fatty liver disease
70 schema:pagination 33
71 schema:productId N20609355fb664bea8030611f0aafc77c
72 N506345f3f0844db9a03195d75ca522cb
73 Nc7e2d9ffcde74ef6990d11c2f3b03919
74 Nd9a9aed318b84eab951ad9dc66f19677
75 Ne871fe82d654491d8f9661f0943f1b4b
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106160279
77 https://doi.org/10.1038/s41540-018-0070-3
78 schema:sdDatePublished 2019-04-10T22:41
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N815838c36f354300873261ebc691f62e
81 schema:url https://www.nature.com/articles/s41540-018-0070-3
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N00fba41ad0514ee986fb8995dc4e9215 rdf:first sg:person.01350512324.89
86 rdf:rest Nee93f7bea21040018f2372138b876ce4
87 N0e4f1a2517324f73a05c06aee2599624 rdf:first sg:person.014500336037.38
88 rdf:rest N60c52c827a0648b899266d2318951bac
89 N16e76bd9c3514941ade36006e65e75d4 rdf:first sg:person.0617715150.47
90 rdf:rest rdf:nil
91 N187bdc8e619947efaacb65e53e9c0609 rdf:first sg:person.01363621304.76
92 rdf:rest N00fba41ad0514ee986fb8995dc4e9215
93 N20609355fb664bea8030611f0aafc77c schema:name dimensions_id
94 schema:value pub.1106160279
95 rdf:type schema:PropertyValue
96 N506345f3f0844db9a03195d75ca522cb schema:name doi
97 schema:value 10.1038/s41540-018-0070-3
98 rdf:type schema:PropertyValue
99 N52f5ceff2c6b4d819302e53e010a8a96 rdf:first sg:person.01124554013.59
100 rdf:rest Na33ce8bbb4f048968a75292a2ce0c1e4
101 N60c52c827a0648b899266d2318951bac rdf:first sg:person.01302377124.59
102 rdf:rest N52f5ceff2c6b4d819302e53e010a8a96
103 N7a9d22fd3c3f452eb40ee445b7d5e74b schema:issueNumber 1
104 rdf:type schema:PublicationIssue
105 N815838c36f354300873261ebc691f62e schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 Na33ce8bbb4f048968a75292a2ce0c1e4 rdf:first sg:person.011605160213.98
108 rdf:rest N187bdc8e619947efaacb65e53e9c0609
109 Nc7e2d9ffcde74ef6990d11c2f3b03919 schema:name pubmed_id
110 schema:value 30131870
111 rdf:type schema:PropertyValue
112 Nd87b270e7d0c4c59af6423604a4d513b schema:name Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, S1 2BJ, Sheffield, UK
113 rdf:type schema:Organization
114 Nd9a9aed318b84eab951ad9dc66f19677 schema:name readcube_id
115 schema:value 93b6eaadc71c3165e93d3e38a6b8f494be33f640b3c9b0dc9abd15b55f85843b
116 rdf:type schema:PropertyValue
117 Ne871fe82d654491d8f9661f0943f1b4b schema:name nlm_unique_id
118 schema:value 101677786
119 rdf:type schema:PropertyValue
120 Nee93f7bea21040018f2372138b876ce4 rdf:first sg:person.01141137160.39
121 rdf:rest N16e76bd9c3514941ade36006e65e75d4
122 Nffa2412f024247449639d259c7017ff4 schema:volumeNumber 4
123 rdf:type schema:PublicationVolume
124 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
125 schema:name Biological Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
128 schema:name Biochemistry and Cell Biology
129 rdf:type schema:DefinedTerm
130 sg:grant.2785367 http://pending.schema.org/fundedItem sg:pub.10.1038/s41540-018-0070-3
131 rdf:type schema:MonetaryGrant
132 sg:grant.3498282 http://pending.schema.org/fundedItem sg:pub.10.1038/s41540-018-0070-3
133 rdf:type schema:MonetaryGrant
134 sg:journal.1053217 schema:issn 2056-7189
135 schema:name npj Systems Biology and Applications
136 rdf:type schema:Periodical
137 sg:person.01124554013.59 schema:affiliation https://www.grid.ac/institutes/grid.418758.7
138 schema:familyName Mazzatti
139 schema:givenName Dawn J.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124554013.59
141 rdf:type schema:Person
142 sg:person.01141137160.39 schema:affiliation https://www.grid.ac/institutes/grid.5475.3
143 schema:familyName Kierzek
144 schema:givenName Andrzej M.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141137160.39
146 rdf:type schema:Person
147 sg:person.011605160213.98 schema:affiliation https://www.grid.ac/institutes/grid.5475.3
148 schema:familyName Barber
149 schema:givenName Amy L.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011605160213.98
151 rdf:type schema:Person
152 sg:person.01302377124.59 schema:affiliation Nd87b270e7d0c4c59af6423604a4d513b
153 schema:familyName Fisher
154 schema:givenName Ciarán P.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302377124.59
156 rdf:type schema:Person
157 sg:person.01350512324.89 schema:affiliation https://www.grid.ac/institutes/grid.9909.9
158 schema:familyName Plant
159 schema:givenName Nicholas J.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350512324.89
161 rdf:type schema:Person
162 sg:person.01363621304.76 schema:affiliation https://www.grid.ac/institutes/grid.9435.b
163 schema:familyName Tindall
164 schema:givenName Marcus J.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363621304.76
166 rdf:type schema:Person
167 sg:person.014500336037.38 schema:affiliation https://www.grid.ac/institutes/grid.5475.3
168 schema:familyName Maldonado
169 schema:givenName Elaina M.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014500336037.38
171 rdf:type schema:Person
172 sg:person.0617715150.47 schema:affiliation https://www.grid.ac/institutes/grid.9909.9
173 schema:familyName Moore
174 schema:givenName J. Bernadette
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617715150.47
176 rdf:type schema:Person
177 sg:pub.10.1007/978-1-4939-3341-9_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014046042
178 https://doi.org/10.1007/978-1-4939-3341-9_2
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/978-3-642-31131-4_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007331389
181 https://doi.org/10.1007/978-3-642-31131-4_22
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s00394-016-1340-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020038173
184 https://doi.org/10.1007/s00394-016-1340-8
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/ejcn.2014.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043319998
187 https://doi.org/10.1038/ejcn.2014.8
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nbt.2488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014185979
190 https://doi.org/10.1038/nbt.2488
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/ncomms2799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014167900
193 https://doi.org/10.1038/ncomms2799
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/ncomms4083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045416438
196 https://doi.org/10.1038/ncomms4083
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/npjsba.2016.32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025001485
199 https://doi.org/10.1038/npjsba.2016.32
200 rdf:type schema:CreativeWork
201 sg:pub.10.1186/1476-511x-10-20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038000406
202 https://doi.org/10.1186/1476-511x-10-20
203 rdf:type schema:CreativeWork
204 sg:pub.10.1186/1752-0509-6-114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000375338
205 https://doi.org/10.1186/1752-0509-6-114
206 rdf:type schema:CreativeWork
207 sg:pub.10.1186/s12953-018-0131-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1101037316
208 https://doi.org/10.1186/s12953-018-0131-y
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1002/hep.21499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003215960
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1002/hep.26672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038298336
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1002/mnfr.201500635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011585685
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1002/psp4.12230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091082370
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.biochi.2016.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014349699
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.cbi.2013.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029800045
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.cmet.2017.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100857725
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.jhep.2015.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012358765
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.molcel.2012.04.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016916712
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.molmet.2014.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048276045
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.pharmthera.2017.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085566241
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1017/s0029665109992217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013391965
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1038/msb.2010.62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029495220
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1038/msb4100177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051807853
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1073/pnas.0610772104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027487019
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1074/jbc.m109.051052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035254614
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1074/jbc.m112.399899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024791597
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1074/jbc.m409072200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001924904
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1093/bib/bbr069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045058456
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1093/bioinformatics/btl485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038102846
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1093/bioinformatics/btt552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013096583
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1097/mco.0000000000000289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012220545
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1111/j.2040-1124.2011.00111.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035658293
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1126/science.1218595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025191587
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1136/bmj.f6846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033349417
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1136/bmj.f6847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027813737
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1136/bmj.h4962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051996787
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1136/bmj.j4340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091865336
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1136/bmjgast-2017-000139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085953245
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1136/flgastro-2013-100403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001956040
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1152/ajpgi.00188.2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063192798
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1155/2010/325183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011152122
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1155/2012/107434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024222198
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1161/jaha.114.001700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050630701
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1242/jcs.037630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048368468
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1371/journal.pcbi.1004899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034728685
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1371/journal.pone.0058895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047354297
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1371/journal.pone.0099245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046064958
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1517/13543784.2015.1006359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014013466
287 rdf:type schema:CreativeWork
288 https://doi.org/10.15252/msb.20167422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084343672
289 rdf:type schema:CreativeWork
290 https://doi.org/10.3109/03602532.2011.577781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045966142
291 rdf:type schema:CreativeWork
292 https://doi.org/10.3390/nu6125679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033626746
293 rdf:type schema:CreativeWork
294 https://doi.org/10.3748/wjg.v20.i41.15070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071371740
295 rdf:type schema:CreativeWork
296 https://doi.org/10.3945/ajcn.114.086314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016127726
297 rdf:type schema:CreativeWork
298 https://doi.org/10.4254/wjh.v8.i20.838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072403692
299 rdf:type schema:CreativeWork
300 https://www.grid.ac/institutes/grid.418758.7 schema:alternateName Procter & Gamble (United States)
301 schema:name Proctor & Gamble, 45224, Cincinnati, OH, USA
302 rdf:type schema:Organization
303 https://www.grid.ac/institutes/grid.5475.3 schema:alternateName University of Surrey
304 schema:name Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, S1 2BJ, Sheffield, UK
305 School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7XH, Surrey, UK
306 rdf:type schema:Organization
307 https://www.grid.ac/institutes/grid.9435.b schema:alternateName University of Reading
308 schema:name Department of Mathematics and Statistics, University of Reading, RG6 6AX, Berkshire, UK
309 Institute of Cardiovascular and Metabolic Research, University of Reading, RG6 6UR, Berkshire, UK
310 rdf:type schema:Organization
311 https://www.grid.ac/institutes/grid.9909.9 schema:alternateName University of Leeds
312 schema:name Faculty of Biological Sciences, University of Leeds, LS2 9JT, Leeds, West Yorkshire, UK
313 School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7XH, Surrey, UK
314 School of Food Science & Nutrition, University of Leeds, LS2 9JT, Leeds, West Yorkshire, UK
315 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...