Multiple low-temperature skyrmionic states in a bulk chiral magnet View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Lars J. Bannenberg, Heribert Wilhelm, Robert Cubitt, Ankit Labh, Marcus P. Schmidt, Eddy Lelièvre-Berna, Catherine Pappas, Maxim Mostovoy, Andrey O. Leonov

ABSTRACT

Magnetic skyrmions are topologically protected nanoscale spin textures with particle-like properties. In bulk cubic helimagnets, they appear under applied magnetic fields and condense spontaneously into a lattice in a narrow region of the phase diagram just below the magnetic ordering temperature, the so-called A-phase. Theory, however, predicts skyrmions to be locally stable in a wide range of magnetic fields and temperatures. Our neutron diffraction measurements reveal the formation of skyrmion states in large areas of the magnetic phase diagram, from the lowest temperatures up to the A-phase. We show that nascent and disappearing spiral states near critical lines catalyze topological charge changing processes, leading to the formation and destruction of skyrmionic states at low temperatures, which are thermodynamically stable or metastable depending on the orientation and strength of the magnetic field. Skyrmions are surprisingly resilient to high magnetic fields: the memory of skyrmion lattice states persists in the field polarized state, even when the skyrmion lattice signal has disappeared. These findings highlight the paramount role of magnetic anisotropies in stabilizing skyrmionic states and open up new routes for manipulating these quasi-particles towards energy-efficient spintronics applications. More... »

PAGES

11

References to SciGraph publications

  • 2016-08. Dramatic pressure-driven enhancement of bulk skyrmion stability in SCIENTIFIC REPORTS
  • 2018-09. Observation of two independent skyrmion phases in a chiral magnetic material in NATURE PHYSICS
  • 2010-02. Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids in NATURE MATERIALS
  • 2017-04. Static three-dimensional topological solitons in fluid chiral ferromagnets and colloids in NATURE MATERIALS
  • 2016-01. Interplay between topological and thermodynamic stability in a metastable magnetic skyrmion lattice in NATURE PHYSICS
  • 2013-12. Topological properties and dynamics of magnetic skyrmions in NATURE NANOTECHNOLOGY
  • 2016-09-01. Transition to and from the skyrmion lattice phase by electric fields in a magnetoelectric compound in NATURE COMMUNICATIONS
  • 2017-08. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials in NATURE
  • 2011-09. Quasi-two-dimensional Skyrmion lattices in a chiral nematic liquid crystal in NATURE COMMUNICATIONS
  • 2017-12. Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet in SCIENTIFIC REPORTS
  • 2016-12. Robust metastable skyrmions and their triangular–square lattice structural transition in a high-temperature chiral magnet in NATURE MATERIALS
  • 2018-12. Direct electric field control of the skyrmion phase in a magnetoelectric insulator in SCIENTIFIC REPORTS
  • 2010-06. Real-space observation of a two-dimensional skyrmion crystal in NATURE
  • 2017-06-13. Magnetic skyrmions: advances in physics and potential applications in NATURE REVIEWS MATERIALS
  • 2014-12. The quantum nature of skyrmions and half-skyrmions in Cu2OSeO3 in NATURE COMMUNICATIONS
  • 2015-10. Unexpected observation of splitting of skyrmion phase in Zn doped Cu2OSeO3 in SCIENTIFIC REPORTS
  • 2012-01. Skyrmion flow near room temperature in an ultralow current density in NATURE COMMUNICATIONS
  • 2013-03. Skyrmions on the track in NATURE NANOTECHNOLOGY
  • 2001-06-21. Skyrmions in a ferromagnetic Bose–Einstein condensate in NATURE
  • 2006-08. Spontaneous skyrmion ground states in magnetic metals in NATURE
  • 2017-12. Squirming motion of baby skyrmions in nematic fluids in NATURE COMMUNICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41535-019-0150-7

    DOI

    http://dx.doi.org/10.1038/s41535-019-0150-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113160546


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Delft University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.5292.c", 
              "name": [
                "Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB, Delft, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bannenberg", 
            "givenName": "Lars J.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Helmholtz-Institute Ulm", 
              "id": "https://www.grid.ac/institutes/grid.461900.a", 
              "name": [
                "Diamond Light Source Ltd., OX11 0DE, Didcot, UK", 
                "Helmholtz-Institut Ulm, Helmholtzstra\u00dfe 11, 89081, Ulm, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wilhelm", 
            "givenName": "Heribert", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut Laue-Langevin", 
              "id": "https://www.grid.ac/institutes/grid.156520.5", 
              "name": [
                "Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042, Grenoble, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cubitt", 
            "givenName": "Robert", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Delft University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.5292.c", 
              "name": [
                "Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB, Delft, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Labh", 
            "givenName": "Ankit", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
              "id": "https://www.grid.ac/institutes/grid.419507.e", 
              "name": [
                "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schmidt", 
            "givenName": "Marcus P.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut Laue-Langevin", 
              "id": "https://www.grid.ac/institutes/grid.156520.5", 
              "name": [
                "Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042, Grenoble, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Leli\u00e8vre-Berna", 
            "givenName": "Eddy", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Delft University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.5292.c", 
              "name": [
                "Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB, Delft, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pappas", 
            "givenName": "Catherine", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Groningen", 
              "id": "https://www.grid.ac/institutes/grid.4830.f", 
              "name": [
                "Zernike Institute for Advanced Materials, University of Groningen, 9700 AB, Groningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mostovoy", 
            "givenName": "Maxim", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hiroshima University", 
              "id": "https://www.grid.ac/institutes/grid.257022.0", 
              "name": [
                "Chiral Research Center, Hiroshima University, Higashi Hiroshima, 739-8526, Hiroshima, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Leonov", 
            "givenName": "Andrey O.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0304-8853(98)01038-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002318470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep21347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002852079", 
              "https://doi.org/10.1038/srep21347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2013.29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006853479", 
              "https://doi.org/10.1038/nnano.2013.29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms12669", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010142850", 
              "https://doi.org/10.1038/ncomms12669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2592", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010396668", 
              "https://doi.org/10.1038/nmat2592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2592", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010396668", 
              "https://doi.org/10.1038/nmat2592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.82.052403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010987650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.82.052403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010987650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.127203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018406018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.127203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018406018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.117.087202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018970070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.117.087202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018970070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s1600576715021792", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022667134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026381550", 
              "https://doi.org/10.1038/nature05056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026381550", 
              "https://doi.org/10.1038/nature05056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(84)90088-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027172130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(84)90088-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027172130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.094411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030120700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.094411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030120700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1990", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030997696", 
              "https://doi.org/10.1038/ncomms1990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.113.107203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032835809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.113.107203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032835809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033406260", 
              "https://doi.org/10.1038/nphys3506"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034080992", 
              "https://doi.org/10.1038/nature09124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034080992", 
              "https://doi.org/10.1038/nature09124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.88.195137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035586535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.88.195137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035586535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4826", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035862205", 
              "https://doi.org/10.1038/nmat4826"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1961.0018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037916716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4752", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042179526", 
              "https://doi.org/10.1038/nmat4752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep13579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044460835", 
              "https://doi.org/10.1038/srep13579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35082010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045224542", 
              "https://doi.org/10.1038/35082010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1250", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045342265", 
              "https://doi.org/10.1038/ncomms1250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6376", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051680707", 
              "https://doi.org/10.1038/ncomms6376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2013.243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052510644", 
              "https://doi.org/10.1038/nnano.2013.243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0022-3719/13/31/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058958623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1367-2630/18/6/065003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059137536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1367-2630/18/9/095004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059137746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.94.104406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060652019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.94.104406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060652019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.94.134433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060652414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.94.134433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060652414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1166767", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062459116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.7.011006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074191020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.7.011006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074191020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/natrevmats.2017.31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085994639", 
              "https://doi.org/10.1038/natrevmats.2017.31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/sciadv.1602562", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086058446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-07996-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091025364", 
              "https://doi.org/10.1038/s41598-017-07996-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature23466", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091310357", 
              "https://doi.org/10.1038/nature23466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature23466", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091310357", 
              "https://doi.org/10.1038/nature23466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physrep.2017.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091592853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physrep.2017.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091592853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physrep.2017.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091592853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-00659-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091849420", 
              "https://doi.org/10.1038/s41467-017-00659-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.119.137201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092017174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.119.137201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092017174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.96.184416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092674158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.96.184416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092674158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1099057918", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.96.220404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099878867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.96.220404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099878867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.120.227202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104337749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.120.227202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104337749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41567-018-0184-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105071617", 
              "https://doi.org/10.1038/s41567-018-0184-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-27882-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105374375", 
              "https://doi.org/10.1038/s41598-018-27882-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aau0227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105711995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevapplied.10.014021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105795852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevapplied.10.014021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105795852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.98.054404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106026942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.98.054404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106026942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7566/jpsj.87.094709", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106309720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.98.060411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106318610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.98.060411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106318610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/sciadv.aat7323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107165056"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Magnetic skyrmions are topologically protected nanoscale spin textures with particle-like properties. In bulk cubic helimagnets, they appear under applied magnetic fields and condense spontaneously into a lattice in a narrow region of the phase diagram just below the magnetic ordering temperature, the so-called A-phase. Theory, however, predicts skyrmions to be locally stable in a wide range of magnetic fields and temperatures. Our neutron diffraction measurements reveal the formation of skyrmion states in large areas of the magnetic phase diagram, from the lowest temperatures up to the A-phase. We show that nascent and disappearing spiral states near critical lines catalyze topological charge changing processes, leading to the formation and destruction of skyrmionic states at low temperatures, which are thermodynamically stable or metastable depending on the orientation and strength of the magnetic field. Skyrmions are surprisingly resilient to high magnetic fields: the memory of skyrmion lattice states persists in the field polarized state, even when the skyrmion lattice signal has disappeared. These findings highlight the paramount role of magnetic anisotropies in stabilizing skyrmionic states and open up new routes for manipulating these quasi-particles towards energy-efficient spintronics applications.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41535-019-0150-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7024963", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1290460", 
            "issn": [
              "2397-4648"
            ], 
            "name": "npj Quantum Materials", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "name": "Multiple low-temperature skyrmionic states in a bulk chiral magnet", 
        "pagination": "11", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a9830becb2f4aa4e113e0f321058a9d51c0b5906cbd6cc26b50082cac287828c"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41535-019-0150-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113160546"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41535-019-0150-7", 
          "https://app.dimensions.ai/details/publication/pub.1113160546"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130794_00000006.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41535-019-0150-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41535-019-0150-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41535-019-0150-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41535-019-0150-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41535-019-0150-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    298 TRIPLES      21 PREDICATES      78 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41535-019-0150-7 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N112f2db645ef4546aff022642f2f8ea0
    4 schema:citation sg:pub.10.1038/35082010
    5 sg:pub.10.1038/natrevmats.2017.31
    6 sg:pub.10.1038/nature05056
    7 sg:pub.10.1038/nature09124
    8 sg:pub.10.1038/nature23466
    9 sg:pub.10.1038/ncomms1250
    10 sg:pub.10.1038/ncomms12669
    11 sg:pub.10.1038/ncomms1990
    12 sg:pub.10.1038/ncomms6376
    13 sg:pub.10.1038/nmat2592
    14 sg:pub.10.1038/nmat4752
    15 sg:pub.10.1038/nmat4826
    16 sg:pub.10.1038/nnano.2013.243
    17 sg:pub.10.1038/nnano.2013.29
    18 sg:pub.10.1038/nphys3506
    19 sg:pub.10.1038/s41467-017-00659-5
    20 sg:pub.10.1038/s41567-018-0184-y
    21 sg:pub.10.1038/s41598-017-07996-x
    22 sg:pub.10.1038/s41598-018-27882-4
    23 sg:pub.10.1038/srep13579
    24 sg:pub.10.1038/srep21347
    25 https://app.dimensions.ai/details/publication/pub.1099057918
    26 https://doi.org/10.1016/0550-3213(84)90088-9
    27 https://doi.org/10.1016/j.physrep.2017.08.001
    28 https://doi.org/10.1016/s0304-8853(98)01038-5
    29 https://doi.org/10.1088/0022-3719/13/31/002
    30 https://doi.org/10.1088/1367-2630/18/6/065003
    31 https://doi.org/10.1088/1367-2630/18/9/095004
    32 https://doi.org/10.1098/rspa.1961.0018
    33 https://doi.org/10.1103/physrevapplied.10.014021
    34 https://doi.org/10.1103/physrevb.82.052403
    35 https://doi.org/10.1103/physrevb.88.195137
    36 https://doi.org/10.1103/physrevb.89.094411
    37 https://doi.org/10.1103/physrevb.94.104406
    38 https://doi.org/10.1103/physrevb.94.134433
    39 https://doi.org/10.1103/physrevb.96.184416
    40 https://doi.org/10.1103/physrevb.96.220404
    41 https://doi.org/10.1103/physrevb.98.054404
    42 https://doi.org/10.1103/physrevb.98.060411
    43 https://doi.org/10.1103/physrevlett.107.127203
    44 https://doi.org/10.1103/physrevlett.113.107203
    45 https://doi.org/10.1103/physrevlett.117.087202
    46 https://doi.org/10.1103/physrevlett.119.137201
    47 https://doi.org/10.1103/physrevlett.120.227202
    48 https://doi.org/10.1103/physrevx.7.011006
    49 https://doi.org/10.1107/s1600576715021792
    50 https://doi.org/10.1126/sciadv.1602562
    51 https://doi.org/10.1126/sciadv.aat7323
    52 https://doi.org/10.1126/science.1166767
    53 https://doi.org/10.1126/science.aau0227
    54 https://doi.org/10.7566/jpsj.87.094709
    55 schema:datePublished 2019-12
    56 schema:datePublishedReg 2019-12-01
    57 schema:description Magnetic skyrmions are topologically protected nanoscale spin textures with particle-like properties. In bulk cubic helimagnets, they appear under applied magnetic fields and condense spontaneously into a lattice in a narrow region of the phase diagram just below the magnetic ordering temperature, the so-called A-phase. Theory, however, predicts skyrmions to be locally stable in a wide range of magnetic fields and temperatures. Our neutron diffraction measurements reveal the formation of skyrmion states in large areas of the magnetic phase diagram, from the lowest temperatures up to the A-phase. We show that nascent and disappearing spiral states near critical lines catalyze topological charge changing processes, leading to the formation and destruction of skyrmionic states at low temperatures, which are thermodynamically stable or metastable depending on the orientation and strength of the magnetic field. Skyrmions are surprisingly resilient to high magnetic fields: the memory of skyrmion lattice states persists in the field polarized state, even when the skyrmion lattice signal has disappeared. These findings highlight the paramount role of magnetic anisotropies in stabilizing skyrmionic states and open up new routes for manipulating these quasi-particles towards energy-efficient spintronics applications.
    58 schema:genre research_article
    59 schema:inLanguage en
    60 schema:isAccessibleForFree false
    61 schema:isPartOf N3914374ca8534249bac38043b6b2c71e
    62 N4c6d645a8dc14345b007a1c268f14d86
    63 sg:journal.1290460
    64 schema:name Multiple low-temperature skyrmionic states in a bulk chiral magnet
    65 schema:pagination 11
    66 schema:productId N1669c6ab6df7409398e6e2abb4c567f1
    67 N2603e8e8af214f86beba89cf677f4b02
    68 Nba79b8d40fca4560ab49afc60e8f787c
    69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113160546
    70 https://doi.org/10.1038/s41535-019-0150-7
    71 schema:sdDatePublished 2019-04-11T13:50
    72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    73 schema:sdPublisher N0bdad73999e044658209ab3c930b1a78
    74 schema:url https://www.nature.com/articles/s41535-019-0150-7
    75 sgo:license sg:explorer/license/
    76 sgo:sdDataset articles
    77 rdf:type schema:ScholarlyArticle
    78 N0bdad73999e044658209ab3c930b1a78 schema:name Springer Nature - SN SciGraph project
    79 rdf:type schema:Organization
    80 N112f2db645ef4546aff022642f2f8ea0 rdf:first N715124bd19fb4bd7ac479d8a91e9ee22
    81 rdf:rest N140cfc1425b54571bd99e6b28ae7d8ce
    82 N140cfc1425b54571bd99e6b28ae7d8ce rdf:first Nb4e8e2ca17d141e0be6b455d8c56803b
    83 rdf:rest N50efad519fb84d76a994187a30edea0f
    84 N1669c6ab6df7409398e6e2abb4c567f1 schema:name dimensions_id
    85 schema:value pub.1113160546
    86 rdf:type schema:PropertyValue
    87 N1da54932ba844f3cb2211733dd2378ef rdf:first N24824542a962460697f8dbb5450423c7
    88 rdf:rest rdf:nil
    89 N24824542a962460697f8dbb5450423c7 schema:affiliation https://www.grid.ac/institutes/grid.257022.0
    90 schema:familyName Leonov
    91 schema:givenName Andrey O.
    92 rdf:type schema:Person
    93 N2603e8e8af214f86beba89cf677f4b02 schema:name doi
    94 schema:value 10.1038/s41535-019-0150-7
    95 rdf:type schema:PropertyValue
    96 N3914374ca8534249bac38043b6b2c71e schema:issueNumber 1
    97 rdf:type schema:PublicationIssue
    98 N3ef8e1ec68154f378e8bd313f1306dc7 rdf:first Ndf68e45bcf294928b94e49c1e4a112f3
    99 rdf:rest Na97a76f3025e4d0591d61a6a1229fafc
    100 N4c6d645a8dc14345b007a1c268f14d86 schema:volumeNumber 4
    101 rdf:type schema:PublicationVolume
    102 N50efad519fb84d76a994187a30edea0f rdf:first N9700bb6056604e5e80b2936ec8595e68
    103 rdf:rest N8dfb59decaba4267a916b2a46f47e5a3
    104 N715124bd19fb4bd7ac479d8a91e9ee22 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
    105 schema:familyName Bannenberg
    106 schema:givenName Lars J.
    107 rdf:type schema:Person
    108 N8dfb59decaba4267a916b2a46f47e5a3 rdf:first Nd2727d212d4b444bb8ef75ff0d2b3e6c
    109 rdf:rest Ne91167b9aa15480f937a67353be86009
    110 N9700bb6056604e5e80b2936ec8595e68 schema:affiliation https://www.grid.ac/institutes/grid.156520.5
    111 schema:familyName Cubitt
    112 schema:givenName Robert
    113 rdf:type schema:Person
    114 N987599d5d5fa44859ea5570095ca6f26 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
    115 schema:familyName Pappas
    116 schema:givenName Catherine
    117 rdf:type schema:Person
    118 Na97a76f3025e4d0591d61a6a1229fafc rdf:first N987599d5d5fa44859ea5570095ca6f26
    119 rdf:rest Ncd5899807d3d4218b73a465458fe7939
    120 Nb4e8e2ca17d141e0be6b455d8c56803b schema:affiliation https://www.grid.ac/institutes/grid.461900.a
    121 schema:familyName Wilhelm
    122 schema:givenName Heribert
    123 rdf:type schema:Person
    124 Nba79b8d40fca4560ab49afc60e8f787c schema:name readcube_id
    125 schema:value a9830becb2f4aa4e113e0f321058a9d51c0b5906cbd6cc26b50082cac287828c
    126 rdf:type schema:PropertyValue
    127 Nc932d5a53a454bf5ba7083c571f04030 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
    128 schema:familyName Mostovoy
    129 schema:givenName Maxim
    130 rdf:type schema:Person
    131 Ncd5899807d3d4218b73a465458fe7939 rdf:first Nc932d5a53a454bf5ba7083c571f04030
    132 rdf:rest N1da54932ba844f3cb2211733dd2378ef
    133 Nd2727d212d4b444bb8ef75ff0d2b3e6c schema:affiliation https://www.grid.ac/institutes/grid.5292.c
    134 schema:familyName Labh
    135 schema:givenName Ankit
    136 rdf:type schema:Person
    137 Ndf68e45bcf294928b94e49c1e4a112f3 schema:affiliation https://www.grid.ac/institutes/grid.156520.5
    138 schema:familyName Lelièvre-Berna
    139 schema:givenName Eddy
    140 rdf:type schema:Person
    141 Ne91167b9aa15480f937a67353be86009 rdf:first Nff3bb7bb5f914dbcac8163792680a6d5
    142 rdf:rest N3ef8e1ec68154f378e8bd313f1306dc7
    143 Nff3bb7bb5f914dbcac8163792680a6d5 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
    144 schema:familyName Schmidt
    145 schema:givenName Marcus P.
    146 rdf:type schema:Person
    147 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Engineering
    149 rdf:type schema:DefinedTerm
    150 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Materials Engineering
    152 rdf:type schema:DefinedTerm
    153 sg:grant.7024963 http://pending.schema.org/fundedItem sg:pub.10.1038/s41535-019-0150-7
    154 rdf:type schema:MonetaryGrant
    155 sg:journal.1290460 schema:issn 2397-4648
    156 schema:name npj Quantum Materials
    157 rdf:type schema:Periodical
    158 sg:pub.10.1038/35082010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045224542
    159 https://doi.org/10.1038/35082010
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1038/natrevmats.2017.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085994639
    162 https://doi.org/10.1038/natrevmats.2017.31
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/nature05056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026381550
    165 https://doi.org/10.1038/nature05056
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/nature09124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034080992
    168 https://doi.org/10.1038/nature09124
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/nature23466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091310357
    171 https://doi.org/10.1038/nature23466
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/ncomms1250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045342265
    174 https://doi.org/10.1038/ncomms1250
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/ncomms12669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010142850
    177 https://doi.org/10.1038/ncomms12669
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/ncomms1990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030997696
    180 https://doi.org/10.1038/ncomms1990
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/ncomms6376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051680707
    183 https://doi.org/10.1038/ncomms6376
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/nmat2592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010396668
    186 https://doi.org/10.1038/nmat2592
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/nmat4752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042179526
    189 https://doi.org/10.1038/nmat4752
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/nmat4826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035862205
    192 https://doi.org/10.1038/nmat4826
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nnano.2013.243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052510644
    195 https://doi.org/10.1038/nnano.2013.243
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nnano.2013.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006853479
    198 https://doi.org/10.1038/nnano.2013.29
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nphys3506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033406260
    201 https://doi.org/10.1038/nphys3506
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/s41467-017-00659-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091849420
    204 https://doi.org/10.1038/s41467-017-00659-5
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/s41567-018-0184-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1105071617
    207 https://doi.org/10.1038/s41567-018-0184-y
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/s41598-017-07996-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1091025364
    210 https://doi.org/10.1038/s41598-017-07996-x
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/s41598-018-27882-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105374375
    213 https://doi.org/10.1038/s41598-018-27882-4
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/srep13579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044460835
    216 https://doi.org/10.1038/srep13579
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/srep21347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002852079
    219 https://doi.org/10.1038/srep21347
    220 rdf:type schema:CreativeWork
    221 https://app.dimensions.ai/details/publication/pub.1099057918 schema:CreativeWork
    222 https://doi.org/10.1016/0550-3213(84)90088-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027172130
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/j.physrep.2017.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091592853
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/s0304-8853(98)01038-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002318470
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1088/0022-3719/13/31/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058958623
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1088/1367-2630/18/6/065003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059137536
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1088/1367-2630/18/9/095004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059137746
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1098/rspa.1961.0018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037916716
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1103/physrevapplied.10.014021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105795852
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1103/physrevb.82.052403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010987650
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1103/physrevb.88.195137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035586535
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1103/physrevb.89.094411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030120700
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1103/physrevb.94.104406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060652019
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1103/physrevb.94.134433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060652414
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1103/physrevb.96.184416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092674158
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1103/physrevb.96.220404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099878867
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1103/physrevb.98.054404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106026942
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1103/physrevb.98.060411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106318610
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1103/physrevlett.107.127203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018406018
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1103/physrevlett.113.107203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032835809
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1103/physrevlett.117.087202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018970070
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1103/physrevlett.119.137201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092017174
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1103/physrevlett.120.227202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104337749
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1103/physrevx.7.011006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074191020
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1107/s1600576715021792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022667134
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1126/sciadv.1602562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086058446
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1126/sciadv.aat7323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107165056
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1126/science.1166767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459116
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1126/science.aau0227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105711995
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.7566/jpsj.87.094709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106309720
    279 rdf:type schema:CreativeWork
    280 https://www.grid.ac/institutes/grid.156520.5 schema:alternateName Institut Laue-Langevin
    281 schema:name Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042, Grenoble, France
    282 rdf:type schema:Organization
    283 https://www.grid.ac/institutes/grid.257022.0 schema:alternateName Hiroshima University
    284 schema:name Chiral Research Center, Hiroshima University, Higashi Hiroshima, 739-8526, Hiroshima, Japan
    285 rdf:type schema:Organization
    286 https://www.grid.ac/institutes/grid.419507.e schema:alternateName Max Planck Institute for Chemical Physics of Solids
    287 schema:name Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
    288 rdf:type schema:Organization
    289 https://www.grid.ac/institutes/grid.461900.a schema:alternateName Helmholtz-Institute Ulm
    290 schema:name Diamond Light Source Ltd., OX11 0DE, Didcot, UK
    291 Helmholtz-Institut Ulm, Helmholtzstraße 11, 89081, Ulm, Germany
    292 rdf:type schema:Organization
    293 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
    294 schema:name Zernike Institute for Advanced Materials, University of Groningen, 9700 AB, Groningen, The Netherlands
    295 rdf:type schema:Organization
    296 https://www.grid.ac/institutes/grid.5292.c schema:alternateName Delft University of Technology
    297 schema:name Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB, Delft, The Netherlands
    298 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...