Enhanced nematic fluctuations near an antiferromagnetic Mott insulator and possible application to high-Tc cuprates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Peter P. Orth, Bhilahari Jeevanesan, Rafael M. Fernandes, Jörg Schmalian

ABSTRACT

Motivated by the widespread experimental observations of nematicity in strongly underdoped cuprate superconductors, we investigate the possibility of enhanced nematic fluctuations in the vicinity of a Mott insulator that displays Néel-type antiferromagnetic order. By performing a strong-coupling expansion of an effective model that contains both Cu-d and O-p orbitals on the square lattice, we demonstrate that quadrupolar fluctuations in the p-orbitals inevitably generate a biquadratic coupling between the spins of the d-orbitals. The key point revealed by our classical Monte-Carlo simulations and large-N calculations is that the biquadratic term favors local stripe-like magnetic fluctuations, which result in an enhanced nematic susceptibility that onsets at a temperature scale determined by the effective Heisenberg exchange J. We discuss the impact of this type of nematic order on the magnetic spectrum and outline possible implications on our understanding of nematicity in the cuprates. New theoretical results shed some light on the origin of the nematic phase observed in underdoped cuprate superconductors, for which a microscopic theory has so far not being developed. The authors focused on the spin correlations near the Mott insulating phase of the parent compound. They started from a model that captures the Cu and O low-energy degrees of freedom and applied to it a strong-coupling expansion, revealing that the magnetic correlations in the Mott state enhance the nematic susceptibility. These results help to explain the asymmetry observed between hole-doped and electron-doped cuprates (in which nematicity is not observed), as the effect originates from charge fluctuations on the O orbitals and is thus present only in the hole-doped part of the phase diagram. More... »

PAGES

4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41535-018-0143-y

DOI

http://dx.doi.org/10.1038/s41535-018-0143-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111273854


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Iowa State University", 
          "id": "https://www.grid.ac/institutes/grid.34421.30", 
          "name": [
            "Department of Physics and Astronomy, Iowa State University, 50011, Ames, IA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orth", 
        "givenName": "Peter P.", 
        "id": "sg:person.0656366540.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656366540.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Institute for Theory of Condensed Matter, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany", 
            "Department of Physics, Technical University of Munich, 85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jeevanesan", 
        "givenName": "Bhilahari", 
        "id": "sg:person.01062735153.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062735153.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Minnesota", 
          "id": "https://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "School of Physics and Astronomy, University of Minnesota, 55455, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fernandes", 
        "givenName": "Rafael M.", 
        "id": "sg:person.0742356200.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742356200.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institute for Theory of Condensed Matter, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany", 
            "Institute for Solid State Physics, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmalian", 
        "givenName": "J\u00f6rg", 
        "id": "sg:person.01331734624.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331734624.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.79.052501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000614315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.052501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000614315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/16/9/093057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002976478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.024534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007447204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.024534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007447204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.137005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011099155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.137005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011099155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.87.457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011738856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.87.457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011738856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.5377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014560517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.5377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014560517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.214517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017767383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.214517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017767383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.097005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020350424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.097005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020350424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.2421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021673975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.2421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021673975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022690485", 
          "https://doi.org/10.1038/nature14165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.180511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025688434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.180511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025688434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026014447", 
          "https://doi.org/10.1038/nature08716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026014447", 
          "https://doi.org/10.1038/nature08716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035778153", 
          "https://doi.org/10.1038/nature10345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/31177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035837523", 
          "https://doi.org/10.1038/31177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/31177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035837523", 
          "https://doi.org/10.1038/31177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035863876", 
          "https://doi.org/10.1038/nphys2502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.75.1201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037247365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.75.1201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037247365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.035149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038087834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.035149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038087834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038425288", 
          "https://doi.org/10.1038/nature09169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038425288", 
          "https://doi.org/10.1038/nature09169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.144502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038482471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.144502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038482471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.155132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038531699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.155132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038531699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/12/10/105006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039586478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/12/10/105006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039586478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039714305", 
          "https://doi.org/10.1038/nphys2877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041283820", 
          "https://doi.org/10.1038/nphys2456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.144505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043125977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.144505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043125977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.11919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043586984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.11919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043586984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1221713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044215023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.027005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044987827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.027005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044987827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/4/13/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045444790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018730903122242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046174367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4534(89)91278-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052402182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4534(89)91278-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052402182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.3759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.3759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.9423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060546369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.9423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060546369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.2344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060549151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.2344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060549151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.224502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060648151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.224502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060648151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.085131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.085131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.047001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.047001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1152309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062457268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1223532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062466776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.69.2151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063118685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/97/47002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064233958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41535-017-0013-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083776860", 
          "https://doi.org/10.1038/s41535-017-0013-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.085142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091439280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.085142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091439280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.227002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093100597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.227002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093100597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.97.165131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103550564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.97.165131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103550564"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Motivated by the widespread experimental observations of nematicity in strongly underdoped cuprate superconductors, we investigate the possibility of enhanced nematic fluctuations in the vicinity of a Mott insulator that displays N\u00e9el-type antiferromagnetic order. By performing a strong-coupling expansion of an effective model that contains both Cu-d and O-p orbitals on the square lattice, we demonstrate that quadrupolar fluctuations in the p-orbitals inevitably generate a biquadratic coupling between the spins of the d-orbitals. The key point revealed by our classical Monte-Carlo simulations and large-N calculations is that the biquadratic term favors local stripe-like magnetic fluctuations, which result in an enhanced nematic susceptibility that onsets at a temperature scale determined by the effective Heisenberg exchange J. We discuss the impact of this type of nematic order on the magnetic spectrum and outline possible implications on our understanding of nematicity in the cuprates. New theoretical results shed some light on the origin of the nematic phase observed in underdoped cuprate superconductors, for which a microscopic theory has so far not being developed. The authors focused on the spin correlations near the Mott insulating phase of the parent compound. They started from a model that captures the Cu and O low-energy degrees of freedom and applied to it a strong-coupling expansion, revealing that the magnetic correlations in the Mott state enhance the nematic susceptibility. These results help to explain the asymmetry observed between hole-doped and electron-doped cuprates (in which nematicity is not observed), as the effect originates from charge fluctuations on the O orbitals and is thus present only in the hole-doped part of the phase diagram.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41535-018-0143-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1290460", 
        "issn": [
          "2397-4648"
        ], 
        "name": "npj Quantum Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Enhanced nematic fluctuations near an antiferromagnetic Mott insulator and possible application to high-Tc cuprates", 
    "pagination": "4", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fbcaf4b0564cc410ed2d0301be42d988afcffd71d2e8f4426267c1fdf18c339e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41535-018-0143-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111273854"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41535-018-0143-y", 
      "https://app.dimensions.ai/details/publication/pub.1111273854"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000319_0000000319/records_11199_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41535-018-0143-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41535-018-0143-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41535-018-0143-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41535-018-0143-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41535-018-0143-y'


 

This table displays all metadata directly associated to this object as RDF triples.

245 TRIPLES      21 PREDICATES      75 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41535-018-0143-y schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N9110383912be4312a3773fd3b6677965
4 schema:citation sg:pub.10.1038/31177
5 sg:pub.10.1038/nature08716
6 sg:pub.10.1038/nature09169
7 sg:pub.10.1038/nature10345
8 sg:pub.10.1038/nature14165
9 sg:pub.10.1038/nphys2456
10 sg:pub.10.1038/nphys2502
11 sg:pub.10.1038/nphys2877
12 sg:pub.10.1038/s41535-017-0013-z
13 https://doi.org/10.1016/0921-4534(89)91278-1
14 https://doi.org/10.1080/00018730903122242
15 https://doi.org/10.1088/0953-8984/4/13/014
16 https://doi.org/10.1088/1367-2630/12/10/105006
17 https://doi.org/10.1088/1367-2630/16/9/093057
18 https://doi.org/10.1103/physrevb.37.3759
19 https://doi.org/10.1103/physrevb.37.9423
20 https://doi.org/10.1103/physrevb.39.2344
21 https://doi.org/10.1103/physrevb.49.11919
22 https://doi.org/10.1103/physrevb.69.144505
23 https://doi.org/10.1103/physrevb.73.214517
24 https://doi.org/10.1103/physrevb.79.052501
25 https://doi.org/10.1103/physrevb.82.180511
26 https://doi.org/10.1103/physrevb.84.144502
27 https://doi.org/10.1103/physrevb.85.024534
28 https://doi.org/10.1103/physrevb.88.155132
29 https://doi.org/10.1103/physrevb.90.035149
30 https://doi.org/10.1103/physrevb.92.224502
31 https://doi.org/10.1103/physrevb.93.085131
32 https://doi.org/10.1103/physrevb.96.085142
33 https://doi.org/10.1103/physrevb.97.165131
34 https://doi.org/10.1103/physrevlett.115.027005
35 https://doi.org/10.1103/physrevlett.116.047001
36 https://doi.org/10.1103/physrevlett.119.227002
37 https://doi.org/10.1103/physrevlett.55.418
38 https://doi.org/10.1103/physrevlett.58.2794
39 https://doi.org/10.1103/physrevlett.61.467
40 https://doi.org/10.1103/physrevlett.86.5377
41 https://doi.org/10.1103/physrevlett.88.137005
42 https://doi.org/10.1103/physrevlett.94.097005
43 https://doi.org/10.1103/revmodphys.75.1201
44 https://doi.org/10.1103/revmodphys.78.17
45 https://doi.org/10.1103/revmodphys.82.2421
46 https://doi.org/10.1103/revmodphys.87.457
47 https://doi.org/10.1126/science.1152309
48 https://doi.org/10.1126/science.1221713
49 https://doi.org/10.1126/science.1223532
50 https://doi.org/10.1143/jpsj.69.2151
51 https://doi.org/10.1209/0295-5075/97/47002
52 schema:datePublished 2019-12
53 schema:datePublishedReg 2019-12-01
54 schema:description Motivated by the widespread experimental observations of nematicity in strongly underdoped cuprate superconductors, we investigate the possibility of enhanced nematic fluctuations in the vicinity of a Mott insulator that displays Néel-type antiferromagnetic order. By performing a strong-coupling expansion of an effective model that contains both Cu-d and O-p orbitals on the square lattice, we demonstrate that quadrupolar fluctuations in the p-orbitals inevitably generate a biquadratic coupling between the spins of the d-orbitals. The key point revealed by our classical Monte-Carlo simulations and large-N calculations is that the biquadratic term favors local stripe-like magnetic fluctuations, which result in an enhanced nematic susceptibility that onsets at a temperature scale determined by the effective Heisenberg exchange J. We discuss the impact of this type of nematic order on the magnetic spectrum and outline possible implications on our understanding of nematicity in the cuprates. New theoretical results shed some light on the origin of the nematic phase observed in underdoped cuprate superconductors, for which a microscopic theory has so far not being developed. The authors focused on the spin correlations near the Mott insulating phase of the parent compound. They started from a model that captures the Cu and O low-energy degrees of freedom and applied to it a strong-coupling expansion, revealing that the magnetic correlations in the Mott state enhance the nematic susceptibility. These results help to explain the asymmetry observed between hole-doped and electron-doped cuprates (in which nematicity is not observed), as the effect originates from charge fluctuations on the O orbitals and is thus present only in the hole-doped part of the phase diagram.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree false
58 schema:isPartOf N0a44a8d2de2c4000a63107dc64a39e08
59 N7b3433acf37e408e8e237189bc568c14
60 sg:journal.1290460
61 schema:name Enhanced nematic fluctuations near an antiferromagnetic Mott insulator and possible application to high-Tc cuprates
62 schema:pagination 4
63 schema:productId N2d7c7716907e4bd0b76b4a6bdad23543
64 N67e7a4ab15a248b28f0cf5c15970f9ab
65 Nb34eab241213477c90a74d01c9450030
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111273854
67 https://doi.org/10.1038/s41535-018-0143-y
68 schema:sdDatePublished 2019-04-11T08:40
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N9e4e3e89d61646f6a09b8e5d836c5074
71 schema:url https://www.nature.com/articles/s41535-018-0143-y
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N02a9e929e26b4ed581378afcdf043264 rdf:first sg:person.01062735153.78
76 rdf:rest N10a74f686fb24fa38205b4ba8656133e
77 N0a44a8d2de2c4000a63107dc64a39e08 schema:issueNumber 1
78 rdf:type schema:PublicationIssue
79 N10a74f686fb24fa38205b4ba8656133e rdf:first sg:person.0742356200.46
80 rdf:rest Naabcb93de7574cdf8a13432485b8745f
81 N2d7c7716907e4bd0b76b4a6bdad23543 schema:name dimensions_id
82 schema:value pub.1111273854
83 rdf:type schema:PropertyValue
84 N67e7a4ab15a248b28f0cf5c15970f9ab schema:name readcube_id
85 schema:value fbcaf4b0564cc410ed2d0301be42d988afcffd71d2e8f4426267c1fdf18c339e
86 rdf:type schema:PropertyValue
87 N7b3433acf37e408e8e237189bc568c14 schema:volumeNumber 4
88 rdf:type schema:PublicationVolume
89 N9110383912be4312a3773fd3b6677965 rdf:first sg:person.0656366540.97
90 rdf:rest N02a9e929e26b4ed581378afcdf043264
91 N9e4e3e89d61646f6a09b8e5d836c5074 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Naabcb93de7574cdf8a13432485b8745f rdf:first sg:person.01331734624.73
94 rdf:rest rdf:nil
95 Nb34eab241213477c90a74d01c9450030 schema:name doi
96 schema:value 10.1038/s41535-018-0143-y
97 rdf:type schema:PropertyValue
98 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
99 schema:name Physical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
102 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
103 rdf:type schema:DefinedTerm
104 sg:journal.1290460 schema:issn 2397-4648
105 schema:name npj Quantum Materials
106 rdf:type schema:Periodical
107 sg:person.01062735153.78 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
108 schema:familyName Jeevanesan
109 schema:givenName Bhilahari
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062735153.78
111 rdf:type schema:Person
112 sg:person.01331734624.73 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
113 schema:familyName Schmalian
114 schema:givenName Jörg
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331734624.73
116 rdf:type schema:Person
117 sg:person.0656366540.97 schema:affiliation https://www.grid.ac/institutes/grid.34421.30
118 schema:familyName Orth
119 schema:givenName Peter P.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656366540.97
121 rdf:type schema:Person
122 sg:person.0742356200.46 schema:affiliation https://www.grid.ac/institutes/grid.17635.36
123 schema:familyName Fernandes
124 schema:givenName Rafael M.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742356200.46
126 rdf:type schema:Person
127 sg:pub.10.1038/31177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035837523
128 https://doi.org/10.1038/31177
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nature08716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026014447
131 https://doi.org/10.1038/nature08716
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nature09169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038425288
134 https://doi.org/10.1038/nature09169
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nature10345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035778153
137 https://doi.org/10.1038/nature10345
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nature14165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022690485
140 https://doi.org/10.1038/nature14165
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nphys2456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041283820
143 https://doi.org/10.1038/nphys2456
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nphys2502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035863876
146 https://doi.org/10.1038/nphys2502
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nphys2877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039714305
149 https://doi.org/10.1038/nphys2877
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/s41535-017-0013-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1083776860
152 https://doi.org/10.1038/s41535-017-0013-z
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/0921-4534(89)91278-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052402182
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1080/00018730903122242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046174367
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1088/0953-8984/4/13/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045444790
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1088/1367-2630/12/10/105006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039586478
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1088/1367-2630/16/9/093057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002976478
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevb.37.3759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060545418
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevb.37.9423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060546369
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevb.39.2344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060549151
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevb.49.11919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043586984
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevb.69.144505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043125977
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevb.73.214517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017767383
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevb.79.052501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000614315
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevb.82.180511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025688434
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevb.84.144502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038482471
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevb.85.024534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007447204
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevb.88.155132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038531699
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevb.90.035149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038087834
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevb.92.224502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060648151
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevb.93.085131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060649162
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevb.96.085142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091439280
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevb.97.165131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103550564
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevlett.115.027005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044987827
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevlett.116.047001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764909
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevlett.119.227002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093100597
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevlett.55.418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792612
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevlett.58.2794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795212
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevlett.61.467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798173
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevlett.86.5377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014560517
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevlett.88.137005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011099155
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevlett.94.097005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020350424
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/revmodphys.75.1201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037247365
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/revmodphys.78.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839611
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/revmodphys.82.2421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021673975
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/revmodphys.87.457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011738856
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1126/science.1152309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457268
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1126/science.1221713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044215023
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1126/science.1223532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062466776
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1143/jpsj.69.2151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063118685
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1209/0295-5075/97/47002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064233958
231 rdf:type schema:CreativeWork
232 https://www.grid.ac/institutes/grid.17635.36 schema:alternateName University of Minnesota
233 schema:name School of Physics and Astronomy, University of Minnesota, 55455, Minneapolis, MN, USA
234 rdf:type schema:Organization
235 https://www.grid.ac/institutes/grid.34421.30 schema:alternateName Iowa State University
236 schema:name Department of Physics and Astronomy, Iowa State University, 50011, Ames, IA, USA
237 rdf:type schema:Organization
238 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
239 schema:name Department of Physics, Technical University of Munich, 85748, Garching, Germany
240 Institute for Theory of Condensed Matter, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
241 rdf:type schema:Organization
242 https://www.grid.ac/institutes/grid.7892.4 schema:alternateName Karlsruhe Institute of Technology
243 schema:name Institute for Solid State Physics, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
244 Institute for Theory of Condensed Matter, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
245 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...