Evolution of the low-temperature Fermi surface of superconducting FeSe1−xSx across a nematic phase transition View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Amalia I. Coldea, Samuel F. Blake, Shigeru Kasahara, Amir A. Haghighirad, Matthew D. Watson, William Knafo, Eun Sang Choi, Alix McCollam, Pascal Reiss, Takuya Yamashita, Mara Bruma, Susannah C. Speller, Yuji Matsuda, Thomas Wolf, Takasada Shibauchi, Andrew J. Schofield

ABSTRACT

The existence of a nematic phase transition in iron-chalcogenide superconductors poses an intriguing question about its impact on superconductivity. To understand the nature of this unique quantum phase transition, it is essential to study how the electronic structure changes across this transition at low temperatures. Here, we investigate the evolution of the Fermi surfaces and electronic interactions across the nematic phase transition of FeSe1−xSx using Shubnikov-de Haas oscillations in high magnetic fields up to 45 T in the low temperature regime down to 0.4 K. Most of the Fermi surfaces of FeSe1−xSx monotonically increase in size except for a prominent low frequency oscillation associated with a small, but highly mobile band, which disappears at the nematic phase boundary near x ~ 0.17, indicative of a topological Lifshitz transition. The quasiparticle masses are larger inside the nematic phase, indicative of a strongly correlated state, but they become suppressed outside it. The experimentally observed changes in the Fermi surface topology, together with the varying degree of electronic correlations, will change the balance of electronic interactions in the multi-band system FeSe1−xSx and promote different kz-dependent superconducting pairing channels inside and outside the nematic phase. New measurements of quantum oscillations in FeSe1-xSx help understanding the nature of the nematic phase transition in Fe-based superconductors. Nematic order — an electronic order that breaks the rotational symmetry of the underlying substrate — is thought to play an important role in the appearance of superconductivity in Fe-based superconductors. A way to investigate the interplay between nematicity and superconductivity is to apply chemical pressure, in this case by substituting Se with S in FeSe samples. Amalia Coldea from the University of Oxford, UK, and colleagues used Shubnikov-de Haas oscillations to characterize the evolution of the Fermi surfaces across the nematic phase transition. They found a strongly correlated state inside the nematic phase and weakening electronic correlations outside it, and evidence for a Lifshitz transition that had not been detected before. More... »

PAGES

2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41535-018-0141-0

DOI

http://dx.doi.org/10.1038/s41535-018-0141-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110955656


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, OX1 3PU, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coldea", 
        "givenName": "Amalia I.", 
        "id": "sg:person.01371361730.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371361730.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, OX1 3PU, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blake", 
        "givenName": "Samuel F.", 
        "id": "sg:person.01051400031.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051400031.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Physics, Kyoto University, 606-8502, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kasahara", 
        "givenName": "Shigeru", 
        "id": "sg:person.01162527767.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162527767.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, OX1 3PU, Oxford, UK", 
            "Institut f\u00fcr Festk\u00f6rperphysik, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haghighirad", 
        "givenName": "Amir A.", 
        "id": "sg:person.01207260642.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207260642.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of St Andrews", 
          "id": "https://www.grid.ac/institutes/grid.11914.3c", 
          "name": [
            "Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, OX1 3PU, Oxford, UK", 
            "School of Physics and Astronomy, University of St. Andrews, KY16 9SS, St. Andrews, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watson", 
        "givenName": "Matthew D.", 
        "id": "sg:person.01262540472.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262540472.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National High Magnetic Field Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.462694.b", 
          "name": [
            "Laboratoire National des Champs Magn\u00e9tiques Intenses (LNCMI-EMFL), UPR 3228, CNRS-UJF-UPS-INSA, 143 Avenue de Rangueil, 31400, Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knafo", 
        "givenName": "William", 
        "id": "sg:person.015043722423.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015043722423.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National High Magnetic Field Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Eun Sang", 
        "id": "sg:person.0635107016.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635107016.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Radboud University Nijmegen", 
          "id": "https://www.grid.ac/institutes/grid.5590.9", 
          "name": [
            "High Field Magnet Laboratory (HFML-EMFL), Radboud University, 6525 ED, Nijmegen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McCollam", 
        "givenName": "Alix", 
        "id": "sg:person.010641372713.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010641372713.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, OX1 3PU, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reiss", 
        "givenName": "Pascal", 
        "id": "sg:person.013430132364.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013430132364.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Physics, Kyoto University, 606-8502, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamashita", 
        "givenName": "Takuya", 
        "id": "sg:person.01265044706.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265044706.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, OX1 3PU, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bruma", 
        "givenName": "Mara", 
        "id": "sg:person.013476245564.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013476245564.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Materials, University of Oxford, OX1 3PH, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Speller", 
        "givenName": "Susannah C.", 
        "id": "sg:person.012543015423.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012543015423.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Physics, Kyoto University, 606-8502, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsuda", 
        "givenName": "Yuji", 
        "id": "sg:person.0630050053.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630050053.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institut f\u00fcr Festk\u00f6rperphysik, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wolf", 
        "givenName": "Thomas", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Advanced Materials Science, University of Tokyo, 277-8561, Kashiwa, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shibauchi", 
        "givenName": "Takasada", 
        "id": "sg:person.01104327467.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104327467.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "School of Physics and Astronomy, University of Birmingham, B15 2TT, Edgbaston, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schofield", 
        "givenName": "Andrew J.", 
        "id": "sg:person.01353502173.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353502173.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.94.201107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002158915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.201107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002158915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.220504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012757698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.220504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012757698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.174510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013366705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.174510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013366705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.6.021032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013856145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.6.021032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013856145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.220502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014178110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.220502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014178110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015880105", 
          "https://doi.org/10.1038/nphys1656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015880105", 
          "https://doi.org/10.1038/nphys1656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.201600153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019875143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms12728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025529306", 
          "https://doi.org/10.1038/ncomms12728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.144517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026594954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.144517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026594954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.026402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027130067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.026402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027130067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.155106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027896176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.155106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027896176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.047002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033174422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.047002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033174422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039714305", 
          "https://doi.org/10.1038/nphys2877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/109/27003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040205609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.216402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042407201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.216402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042407201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042830750", 
          "https://doi.org/10.1038/nmat3464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms10840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043590960", 
          "https://doi.org/10.1038/ncomms10840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1605806113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044429422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.6.031028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045501832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.6.031028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045501832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms12146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046144410", 
          "https://doi.org/10.1038/ncomms12146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.257002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048335157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.257002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048335157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.027006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051372113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.027006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051372113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.6.041045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052086099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.6.041045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052086099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6668/aa570a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059134024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.121108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.121108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.094505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.094505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.104502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.104502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.100503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060651990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.100503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060651990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.115153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060652124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.115153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060652124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.155138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060652578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.155138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060652578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.057008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.057008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.58.1520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063110941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7566/jpsj.84.063701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073830257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7566/jpsj.84.063701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073830257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep41979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083685804", 
          "https://doi.org/10.1038/srep41979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.081106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083887242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.081106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083887242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms14988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084924205", 
          "https://doi.org/10.1038/ncomms14988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aal1575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090396933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aal1575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090396933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/aa8a04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091479591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.121103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091623660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.121103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091623660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-01277-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092351505", 
          "https://doi.org/10.1038/s41467-017-01277-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-conmatphys-033117-054137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093126330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511897870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098714166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1717331115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100588618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1717331115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100588618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.97.115165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101875933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.97.115165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101875933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.aar6419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104228944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.98.020507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105887704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.98.020507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105887704"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The existence of a nematic phase transition in iron-chalcogenide superconductors poses an intriguing question about its impact on superconductivity. To understand the nature of this unique quantum phase transition, it is essential to study how the electronic structure changes across this transition at low temperatures. Here, we investigate the evolution of the Fermi surfaces and electronic interactions across the nematic phase transition of FeSe1\u2212xSx using Shubnikov-de Haas oscillations in high magnetic fields up to 45 T in the low temperature regime down to 0.4 K. Most of the Fermi surfaces of FeSe1\u2212xSx monotonically increase in size except for a prominent low frequency oscillation associated with a small, but highly mobile band, which disappears at the nematic phase boundary near x ~ 0.17, indicative of a topological Lifshitz transition. The quasiparticle masses are larger inside the nematic phase, indicative of a strongly correlated state, but they become suppressed outside it. The experimentally observed changes in the Fermi surface topology, together with the varying degree of electronic correlations, will change the balance of electronic interactions in the multi-band system FeSe1\u2212xSx and promote different kz-dependent superconducting pairing channels inside and outside the nematic phase. New measurements of quantum oscillations in FeSe1-xSx help understanding the nature of the nematic phase transition in Fe-based superconductors. Nematic order \u2014 an electronic order that breaks the rotational symmetry of the underlying substrate \u2014 is thought to play an important role in the appearance of superconductivity in Fe-based superconductors. A way to investigate the interplay between nematicity and superconductivity is to apply chemical pressure, in this case by substituting Se with S in FeSe samples. Amalia Coldea from the University of Oxford, UK, and colleagues used Shubnikov-de Haas oscillations to characterize the evolution of the Fermi surfaces across the nematic phase transition. They found a strongly correlated state inside the nematic phase and weakening electronic correlations outside it, and evidence for a Lifshitz transition that had not been detected before.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41535-018-0141-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2752757", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3958654", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4456239", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3128310", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7438690", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2779512", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3479346", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2767414", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1290460", 
        "issn": [
          "2397-4648"
        ], 
        "name": "npj Quantum Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Evolution of the low-temperature Fermi surface of superconducting FeSe1\u2212xSx across a nematic phase transition", 
    "pagination": "2", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dbe7e60051031d01e998c15e81c0a3fb9fc8a54c4218db2b0d02c1df1aebeaa3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41535-018-0141-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110955656"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41535-018-0141-0", 
      "https://app.dimensions.ai/details/publication/pub.1110955656"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000311_0000000311/records_55484_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41535-018-0141-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41535-018-0141-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41535-018-0141-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41535-018-0141-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41535-018-0141-0'


 

This table displays all metadata directly associated to this object as RDF triples.

354 TRIPLES      21 PREDICATES      73 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41535-018-0141-0 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author N97f4598965da4da09c16ff1038861d03
4 schema:citation sg:pub.10.1038/ncomms10840
5 sg:pub.10.1038/ncomms12146
6 sg:pub.10.1038/ncomms12728
7 sg:pub.10.1038/ncomms14988
8 sg:pub.10.1038/nmat3464
9 sg:pub.10.1038/nphys1656
10 sg:pub.10.1038/nphys2877
11 sg:pub.10.1038/s41467-017-01277-x
12 sg:pub.10.1038/srep41979
13 https://doi.org/10.1002/pssb.201600153
14 https://doi.org/10.1017/cbo9780511897870
15 https://doi.org/10.1073/pnas.1605806113
16 https://doi.org/10.1073/pnas.1717331115
17 https://doi.org/10.1088/1361-6668/aa570a
18 https://doi.org/10.1088/1367-2630/aa8a04
19 https://doi.org/10.1103/physrevb.83.220504
20 https://doi.org/10.1103/physrevb.89.220502
21 https://doi.org/10.1103/physrevb.90.144517
22 https://doi.org/10.1103/physrevb.91.155106
23 https://doi.org/10.1103/physrevb.91.174510
24 https://doi.org/10.1103/physrevb.92.121108
25 https://doi.org/10.1103/physrevb.93.094505
26 https://doi.org/10.1103/physrevb.93.104502
27 https://doi.org/10.1103/physrevb.94.100503
28 https://doi.org/10.1103/physrevb.94.115153
29 https://doi.org/10.1103/physrevb.94.155138
30 https://doi.org/10.1103/physrevb.94.201107
31 https://doi.org/10.1103/physrevb.95.081106
32 https://doi.org/10.1103/physrevb.96.121103
33 https://doi.org/10.1103/physrevb.97.115165
34 https://doi.org/10.1103/physrevb.98.020507
35 https://doi.org/10.1103/physrevlett.101.216402
36 https://doi.org/10.1103/physrevlett.104.057008
37 https://doi.org/10.1103/physrevlett.108.047002
38 https://doi.org/10.1103/physrevlett.110.257002
39 https://doi.org/10.1103/physrevlett.115.026402
40 https://doi.org/10.1103/physrevlett.115.027006
41 https://doi.org/10.1103/physrevx.6.021032
42 https://doi.org/10.1103/physrevx.6.031028
43 https://doi.org/10.1103/physrevx.6.041045
44 https://doi.org/10.1126/sciadv.aar6419
45 https://doi.org/10.1126/science.aal1575
46 https://doi.org/10.1143/jpsj.58.1520
47 https://doi.org/10.1146/annurev-conmatphys-033117-054137
48 https://doi.org/10.1209/0295-5075/109/27003
49 https://doi.org/10.7566/jpsj.84.063701
50 schema:datePublished 2019-12
51 schema:datePublishedReg 2019-12-01
52 schema:description The existence of a nematic phase transition in iron-chalcogenide superconductors poses an intriguing question about its impact on superconductivity. To understand the nature of this unique quantum phase transition, it is essential to study how the electronic structure changes across this transition at low temperatures. Here, we investigate the evolution of the Fermi surfaces and electronic interactions across the nematic phase transition of FeSe1−xSx using Shubnikov-de Haas oscillations in high magnetic fields up to 45 T in the low temperature regime down to 0.4 K. Most of the Fermi surfaces of FeSe1−xSx monotonically increase in size except for a prominent low frequency oscillation associated with a small, but highly mobile band, which disappears at the nematic phase boundary near x ~ 0.17, indicative of a topological Lifshitz transition. The quasiparticle masses are larger inside the nematic phase, indicative of a strongly correlated state, but they become suppressed outside it. The experimentally observed changes in the Fermi surface topology, together with the varying degree of electronic correlations, will change the balance of electronic interactions in the multi-band system FeSe1−xSx and promote different kz-dependent superconducting pairing channels inside and outside the nematic phase. New measurements of quantum oscillations in FeSe1-xSx help understanding the nature of the nematic phase transition in Fe-based superconductors. Nematic order — an electronic order that breaks the rotational symmetry of the underlying substrate — is thought to play an important role in the appearance of superconductivity in Fe-based superconductors. A way to investigate the interplay between nematicity and superconductivity is to apply chemical pressure, in this case by substituting Se with S in FeSe samples. Amalia Coldea from the University of Oxford, UK, and colleagues used Shubnikov-de Haas oscillations to characterize the evolution of the Fermi surfaces across the nematic phase transition. They found a strongly correlated state inside the nematic phase and weakening electronic correlations outside it, and evidence for a Lifshitz transition that had not been detected before.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N6f2012e8bc0f469e91163d1c720be1e3
57 Nbf8b26f5f0744595bc076bdf7f4da053
58 sg:journal.1290460
59 schema:name Evolution of the low-temperature Fermi surface of superconducting FeSe1−xSx across a nematic phase transition
60 schema:pagination 2
61 schema:productId N60d0985e26b7424d9214bba16804a1dc
62 N82987db04e45428cb64c3bdc8ab2b27b
63 Nd1dff92838e74c97b54b5ec3fe55e4bb
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110955656
65 https://doi.org/10.1038/s41535-018-0141-0
66 schema:sdDatePublished 2019-04-11T08:35
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Ne1223130b466440c8c04bb2378827253
69 schema:url https://www.nature.com/articles/s41535-018-0141-0
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N01a503484d7e4b058a4fd4217369878e rdf:first sg:person.015043722423.13
74 rdf:rest N8f50bf67adad41d59f998468f574b051
75 N2e3f5e516a844aff9ed5a301fea795eb rdf:first sg:person.01104327467.90
76 rdf:rest Nac4d8bbf95504899971732e855158661
77 N445b60b81da84d788df6ef35cd27ff25 rdf:first sg:person.01051400031.76
78 rdf:rest Nd60d5586ca2b4a089c0b69893cae7676
79 N4cebe159cfff45558136681de2966545 rdf:first Nc41f32baa8ca4f9784d200c97acf2bda
80 rdf:rest N2e3f5e516a844aff9ed5a301fea795eb
81 N502f0d5da8fd4d93bc2cb706bf09aff4 rdf:first sg:person.01262540472.46
82 rdf:rest N01a503484d7e4b058a4fd4217369878e
83 N60d0985e26b7424d9214bba16804a1dc schema:name doi
84 schema:value 10.1038/s41535-018-0141-0
85 rdf:type schema:PropertyValue
86 N6f2012e8bc0f469e91163d1c720be1e3 schema:volumeNumber 4
87 rdf:type schema:PublicationVolume
88 N72e85edf59fb4f34ba245128d6e018d0 rdf:first sg:person.010641372713.11
89 rdf:rest N9e35c4c9e86746369e47ece6f583ae4e
90 N7e857d53df984cbaa3a52985ae5706f8 rdf:first sg:person.013476245564.07
91 rdf:rest Nc15aefda36dc46239825523f926f50b6
92 N82987db04e45428cb64c3bdc8ab2b27b schema:name readcube_id
93 schema:value dbe7e60051031d01e998c15e81c0a3fb9fc8a54c4218db2b0d02c1df1aebeaa3
94 rdf:type schema:PropertyValue
95 N8f50bf67adad41d59f998468f574b051 rdf:first sg:person.0635107016.86
96 rdf:rest N72e85edf59fb4f34ba245128d6e018d0
97 N91654f78e20e4b11bfbb087d5729dd23 rdf:first sg:person.01265044706.51
98 rdf:rest N7e857d53df984cbaa3a52985ae5706f8
99 N97f4598965da4da09c16ff1038861d03 rdf:first sg:person.01371361730.90
100 rdf:rest N445b60b81da84d788df6ef35cd27ff25
101 N9e35c4c9e86746369e47ece6f583ae4e rdf:first sg:person.013430132364.86
102 rdf:rest N91654f78e20e4b11bfbb087d5729dd23
103 Nac4d8bbf95504899971732e855158661 rdf:first sg:person.01353502173.33
104 rdf:rest rdf:nil
105 Nad0549aa0f184f6dac91bab159f4a9ef rdf:first sg:person.01207260642.86
106 rdf:rest N502f0d5da8fd4d93bc2cb706bf09aff4
107 Nbf8b26f5f0744595bc076bdf7f4da053 schema:issueNumber 1
108 rdf:type schema:PublicationIssue
109 Nc15aefda36dc46239825523f926f50b6 rdf:first sg:person.012543015423.51
110 rdf:rest Nc51098a4d7a64fceb367e403c2d0acd5
111 Nc41f32baa8ca4f9784d200c97acf2bda schema:affiliation https://www.grid.ac/institutes/grid.7892.4
112 schema:familyName Wolf
113 schema:givenName Thomas
114 rdf:type schema:Person
115 Nc51098a4d7a64fceb367e403c2d0acd5 rdf:first sg:person.0630050053.50
116 rdf:rest N4cebe159cfff45558136681de2966545
117 Nd1dff92838e74c97b54b5ec3fe55e4bb schema:name dimensions_id
118 schema:value pub.1110955656
119 rdf:type schema:PropertyValue
120 Nd60d5586ca2b4a089c0b69893cae7676 rdf:first sg:person.01162527767.48
121 rdf:rest Nad0549aa0f184f6dac91bab159f4a9ef
122 Ne1223130b466440c8c04bb2378827253 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
125 schema:name Physical Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
128 schema:name Condensed Matter Physics
129 rdf:type schema:DefinedTerm
130 sg:grant.2752757 http://pending.schema.org/fundedItem sg:pub.10.1038/s41535-018-0141-0
131 rdf:type schema:MonetaryGrant
132 sg:grant.2767414 http://pending.schema.org/fundedItem sg:pub.10.1038/s41535-018-0141-0
133 rdf:type schema:MonetaryGrant
134 sg:grant.2779512 http://pending.schema.org/fundedItem sg:pub.10.1038/s41535-018-0141-0
135 rdf:type schema:MonetaryGrant
136 sg:grant.3128310 http://pending.schema.org/fundedItem sg:pub.10.1038/s41535-018-0141-0
137 rdf:type schema:MonetaryGrant
138 sg:grant.3479346 http://pending.schema.org/fundedItem sg:pub.10.1038/s41535-018-0141-0
139 rdf:type schema:MonetaryGrant
140 sg:grant.3958654 http://pending.schema.org/fundedItem sg:pub.10.1038/s41535-018-0141-0
141 rdf:type schema:MonetaryGrant
142 sg:grant.4456239 http://pending.schema.org/fundedItem sg:pub.10.1038/s41535-018-0141-0
143 rdf:type schema:MonetaryGrant
144 sg:grant.7438690 http://pending.schema.org/fundedItem sg:pub.10.1038/s41535-018-0141-0
145 rdf:type schema:MonetaryGrant
146 sg:journal.1290460 schema:issn 2397-4648
147 schema:name npj Quantum Materials
148 rdf:type schema:Periodical
149 sg:person.01051400031.76 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
150 schema:familyName Blake
151 schema:givenName Samuel F.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051400031.76
153 rdf:type schema:Person
154 sg:person.010641372713.11 schema:affiliation https://www.grid.ac/institutes/grid.5590.9
155 schema:familyName McCollam
156 schema:givenName Alix
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010641372713.11
158 rdf:type schema:Person
159 sg:person.01104327467.90 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
160 schema:familyName Shibauchi
161 schema:givenName Takasada
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104327467.90
163 rdf:type schema:Person
164 sg:person.01162527767.48 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
165 schema:familyName Kasahara
166 schema:givenName Shigeru
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162527767.48
168 rdf:type schema:Person
169 sg:person.01207260642.86 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
170 schema:familyName Haghighirad
171 schema:givenName Amir A.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207260642.86
173 rdf:type schema:Person
174 sg:person.012543015423.51 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
175 schema:familyName Speller
176 schema:givenName Susannah C.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012543015423.51
178 rdf:type schema:Person
179 sg:person.01262540472.46 schema:affiliation https://www.grid.ac/institutes/grid.11914.3c
180 schema:familyName Watson
181 schema:givenName Matthew D.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262540472.46
183 rdf:type schema:Person
184 sg:person.01265044706.51 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
185 schema:familyName Yamashita
186 schema:givenName Takuya
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265044706.51
188 rdf:type schema:Person
189 sg:person.013430132364.86 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
190 schema:familyName Reiss
191 schema:givenName Pascal
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013430132364.86
193 rdf:type schema:Person
194 sg:person.013476245564.07 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
195 schema:familyName Bruma
196 schema:givenName Mara
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013476245564.07
198 rdf:type schema:Person
199 sg:person.01353502173.33 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
200 schema:familyName Schofield
201 schema:givenName Andrew J.
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353502173.33
203 rdf:type schema:Person
204 sg:person.01371361730.90 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
205 schema:familyName Coldea
206 schema:givenName Amalia I.
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371361730.90
208 rdf:type schema:Person
209 sg:person.015043722423.13 schema:affiliation https://www.grid.ac/institutes/grid.462694.b
210 schema:familyName Knafo
211 schema:givenName William
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015043722423.13
213 rdf:type schema:Person
214 sg:person.0630050053.50 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
215 schema:familyName Matsuda
216 schema:givenName Yuji
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630050053.50
218 rdf:type schema:Person
219 sg:person.0635107016.86 schema:affiliation https://www.grid.ac/institutes/grid.481548.4
220 schema:familyName Choi
221 schema:givenName Eun Sang
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635107016.86
223 rdf:type schema:Person
224 sg:pub.10.1038/ncomms10840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043590960
225 https://doi.org/10.1038/ncomms10840
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/ncomms12146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046144410
228 https://doi.org/10.1038/ncomms12146
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/ncomms12728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025529306
231 https://doi.org/10.1038/ncomms12728
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/ncomms14988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084924205
234 https://doi.org/10.1038/ncomms14988
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/nmat3464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042830750
237 https://doi.org/10.1038/nmat3464
238 rdf:type schema:CreativeWork
239 sg:pub.10.1038/nphys1656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015880105
240 https://doi.org/10.1038/nphys1656
241 rdf:type schema:CreativeWork
242 sg:pub.10.1038/nphys2877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039714305
243 https://doi.org/10.1038/nphys2877
244 rdf:type schema:CreativeWork
245 sg:pub.10.1038/s41467-017-01277-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1092351505
246 https://doi.org/10.1038/s41467-017-01277-x
247 rdf:type schema:CreativeWork
248 sg:pub.10.1038/srep41979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083685804
249 https://doi.org/10.1038/srep41979
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1002/pssb.201600153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019875143
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1017/cbo9780511897870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098714166
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1073/pnas.1605806113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044429422
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1073/pnas.1717331115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100588618
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1088/1361-6668/aa570a schema:sameAs https://app.dimensions.ai/details/publication/pub.1059134024
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1088/1367-2630/aa8a04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091479591
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1103/physrevb.83.220504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012757698
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1103/physrevb.89.220502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014178110
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1103/physrevb.90.144517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026594954
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1103/physrevb.91.155106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027896176
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1103/physrevb.91.174510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013366705
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1103/physrevb.92.121108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060647174
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1103/physrevb.93.094505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060649293
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1103/physrevb.93.104502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060649374
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1103/physrevb.94.100503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060651990
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1103/physrevb.94.115153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060652124
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1103/physrevb.94.155138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060652578
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1103/physrevb.94.201107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002158915
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1103/physrevb.95.081106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083887242
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1103/physrevb.96.121103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091623660
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1103/physrevb.97.115165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101875933
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1103/physrevb.98.020507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105887704
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1103/physrevlett.101.216402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042407201
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1103/physrevlett.104.057008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756573
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1103/physrevlett.108.047002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033174422
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1103/physrevlett.110.257002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048335157
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1103/physrevlett.115.026402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027130067
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1103/physrevlett.115.027006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051372113
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1103/physrevx.6.021032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013856145
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1103/physrevx.6.031028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045501832
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1103/physrevx.6.041045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052086099
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1126/sciadv.aar6419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104228944
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1126/science.aal1575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090396933
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1143/jpsj.58.1520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063110941
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1146/annurev-conmatphys-033117-054137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093126330
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1209/0295-5075/109/27003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040205609
322 rdf:type schema:CreativeWork
323 https://doi.org/10.7566/jpsj.84.063701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073830257
324 rdf:type schema:CreativeWork
325 https://www.grid.ac/institutes/grid.11914.3c schema:alternateName University of St Andrews
326 schema:name Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, OX1 3PU, Oxford, UK
327 School of Physics and Astronomy, University of St. Andrews, KY16 9SS, St. Andrews, UK
328 rdf:type schema:Organization
329 https://www.grid.ac/institutes/grid.258799.8 schema:alternateName Kyoto University
330 schema:name Department of Physics, Kyoto University, 606-8502, Kyoto, Japan
331 rdf:type schema:Organization
332 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
333 schema:name Department of Advanced Materials Science, University of Tokyo, 277-8561, Kashiwa, Chiba, Japan
334 rdf:type schema:Organization
335 https://www.grid.ac/institutes/grid.462694.b schema:alternateName French National High Magnetic Field Laboratory
336 schema:name Laboratoire National des Champs Magnétiques Intenses (LNCMI-EMFL), UPR 3228, CNRS-UJF-UPS-INSA, 143 Avenue de Rangueil, 31400, Toulouse, France
337 rdf:type schema:Organization
338 https://www.grid.ac/institutes/grid.481548.4 schema:alternateName National High Magnetic Field Laboratory
339 schema:name National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA
340 rdf:type schema:Organization
341 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
342 schema:name Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, OX1 3PU, Oxford, UK
343 Department of Materials, University of Oxford, OX1 3PH, Oxford, UK
344 rdf:type schema:Organization
345 https://www.grid.ac/institutes/grid.5590.9 schema:alternateName Radboud University Nijmegen
346 schema:name High Field Magnet Laboratory (HFML-EMFL), Radboud University, 6525 ED, Nijmegen, The Netherlands
347 rdf:type schema:Organization
348 https://www.grid.ac/institutes/grid.6572.6 schema:alternateName University of Birmingham
349 schema:name School of Physics and Astronomy, University of Birmingham, B15 2TT, Edgbaston, Birmingham, UK
350 rdf:type schema:Organization
351 https://www.grid.ac/institutes/grid.7892.4 schema:alternateName Karlsruhe Institute of Technology
352 schema:name Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, OX1 3PU, Oxford, UK
353 Institut für Festkörperphysik, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany
354 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...