High field charge order across the phase diagram of YBa2Cu3Oy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Francis Laliberté, Mehdi Frachet, Siham Benhabib, Benjamin Borgnic, Toshinao Loew, Juan Porras, Mathieu Le Tacon, Bernhard Keimer, Steffen Wiedmann, Cyril Proust, David LeBoeuf

ABSTRACT

In hole-doped cuprates there is now compelling evidence that inside the pseudogap phase, charge order breaks translational symmetry. In YBa2Cu3Oy charge order emerges in two steps: a 2D order found at zero field and at high temperature inside the pseudogap phase, and a 3D order that is superimposed below the superconducting transition Tc when superconductivity is weakened by a magnetic field. Several issues still need to be addressed such as the effect of disorder, the relationship between those charge orders and their respective impact on the Fermi surface. Here, we report high magnetic field sound velocity measurements of the 3D charge order in underdoped YBa2Cu3Oy in a large doping range. We found that the 3D charge order exists over the same doping range as its 2D counterpart, indicating an intimate connection between the two distinct orders. Moreover, our data suggest that 3D charge order has only a limited impact on low-lying electronic states of YBa2Cu3Oy. The long range charge order observed in underdoped YBCO when superconductivity is weakened by a high magnetic field is found to exist over a similar doping range as the short range charge order found above the superconducting critical Tc. F. Laliberté et al. used ultrasound velocity measurements in high magnetic field to thermodynamically detect the transition towards long range charge order in underdoped YBCO in a large doping range. This systematic study reveals the boundary of the long range charge order dome in the T,p phase diagram of YBCO, which extends over the same doping range as the short range order observed at higher temperatures in zero magnetic field. This indicates an intimate connection between the two kinds of charge modulations. Furthermore, a comparison with Hall effect measurements shows that the onset of long range charge order has a limited impact on low-lying electronic states. More... »

PAGES

11

References to SciGraph publications

  • 2013-07. Pseudogap state near a quantum critical point in NATURE PHYSICS
  • 2015-12. Calorimetric determination of the magnetic phase diagram of underdoped ortho II YBa2Cu3O6.54 single crystals in NATURE COMMUNICATIONS
  • 2014-12. Charge order and its connection with Fermi-liquid charge transport in a pristine high-Tc cuprate in NATURE COMMUNICATIONS
  • 2016-01-20. Giant phonon anomaly associated with superconducting fluctuations in the pseudogap phase of cuprates in NATURE COMMUNICATIONS
  • 2013-12. Emergence of charge order from the vortex state of a high-temperature superconductor in NATURE COMMUNICATIONS
  • 2016-03. Change of carrier density at the pseudogap critical point of a cuprate superconductor in NATURE
  • 2016-05-05. Magnetic field controlled charge density wave coupling in underdoped YBa2Cu3O6+x in NATURE COMMUNICATIONS
  • 2011-09. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy in NATURE
  • 2013-02. Thermodynamic phase diagram of static charge order in underdoped YBa2Cu3Oy in NATURE PHYSICS
  • 2012-12. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67 in NATURE PHYSICS
  • 2014-12. Direct measurement of the upper critical field in cuprate superconductors in NATURE COMMUNICATIONS
  • 2007-05-31. Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor in NATURE
  • 2007-11. Electron pockets in the Fermi surface of hole-doped high-Tc superconductors in NATURE
  • 2015-12. Incipient charge order observed by NMR in the normal state of YBa2Cu3Oy in NATURE COMMUNICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41535-018-0084-5

    DOI

    http://dx.doi.org/10.1038/s41535-018-0084-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1101201648


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "French National High Magnetic Field Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.462694.b", 
              "name": [
                "Laboratoire National des Champs Magn\u00e9tiques Intenses (LNCMI-EMFL), (CNRS-INSA-UGA-UPS), 31400/38042, Toulouse/Grenoble, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lalibert\u00e9", 
            "givenName": "Francis", 
            "id": "sg:person.01331134054.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331134054.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National High Magnetic Field Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.462694.b", 
              "name": [
                "Laboratoire National des Champs Magn\u00e9tiques Intenses (LNCMI-EMFL), (CNRS-INSA-UGA-UPS), 31400/38042, Toulouse/Grenoble, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Frachet", 
            "givenName": "Mehdi", 
            "id": "sg:person.013743265737.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013743265737.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National High Magnetic Field Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.462694.b", 
              "name": [
                "Laboratoire National des Champs Magn\u00e9tiques Intenses (LNCMI-EMFL), (CNRS-INSA-UGA-UPS), 31400/38042, Toulouse/Grenoble, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benhabib", 
            "givenName": "Siham", 
            "id": "sg:person.0755752521.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755752521.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National High Magnetic Field Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.462694.b", 
              "name": [
                "Laboratoire National des Champs Magn\u00e9tiques Intenses (LNCMI-EMFL), (CNRS-INSA-UGA-UPS), 31400/38042, Toulouse/Grenoble, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Borgnic", 
            "givenName": "Benjamin", 
            "id": "sg:person.012472240544.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012472240544.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Solid State Research", 
              "id": "https://www.grid.ac/institutes/grid.419552.e", 
              "name": [
                "Max-Planck-Institut f\u00fcr Festk\u00f6rperforschung, Heisenbergstrasse 1, D-70569, Stuttgart, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Loew", 
            "givenName": "Toshinao", 
            "id": "sg:person.0770255203.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770255203.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Solid State Research", 
              "id": "https://www.grid.ac/institutes/grid.419552.e", 
              "name": [
                "Max-Planck-Institut f\u00fcr Festk\u00f6rperforschung, Heisenbergstrasse 1, D-70569, Stuttgart, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Porras", 
            "givenName": "Juan", 
            "id": "sg:person.01013477352.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013477352.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Karlsruhe Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.7892.4", 
              "name": [
                "Max-Planck-Institut f\u00fcr Festk\u00f6rperforschung, Heisenbergstrasse 1, D-70569, Stuttgart, Germany", 
                "Karlsruher Institut f\u00fcr Technologie, Institut f\u00fcr Festk\u00f6rperphysik, D-76344, Eggenstein-Leopoldshafen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Le Tacon", 
            "givenName": "Mathieu", 
            "id": "sg:person.01032527303.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032527303.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Solid State Research", 
              "id": "https://www.grid.ac/institutes/grid.419552.e", 
              "name": [
                "Max-Planck-Institut f\u00fcr Festk\u00f6rperforschung, Heisenbergstrasse 1, D-70569, Stuttgart, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Keimer", 
            "givenName": "Bernhard", 
            "id": "sg:person.01337231572.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337231572.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Radboud University Nijmegen", 
              "id": "https://www.grid.ac/institutes/grid.5590.9", 
              "name": [
                "High Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wiedmann", 
            "givenName": "Steffen", 
            "id": "sg:person.015471463265.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015471463265.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National High Magnetic Field Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.462694.b", 
              "name": [
                "Laboratoire National des Champs Magn\u00e9tiques Intenses (LNCMI-EMFL), (CNRS-INSA-UGA-UPS), 31400/38042, Toulouse/Grenoble, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Proust", 
            "givenName": "Cyril", 
            "id": "sg:person.01205726457.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205726457.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National High Magnetic Field Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.462694.b", 
              "name": [
                "Laboratoire National des Champs Magn\u00e9tiques Intenses (LNCMI-EMFL), (CNRS-INSA-UGA-UPS), 31400/38042, Toulouse/Grenoble, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "LeBoeuf", 
            "givenName": "David", 
            "id": "sg:person.0744271763.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744271763.95"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevb.89.224513", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002141850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.224513", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002141850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2641", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002153810", 
              "https://doi.org/10.1038/nphys2641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06332", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002933807", 
              "https://doi.org/10.1038/nature06332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms7438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004253701", 
              "https://doi.org/10.1038/ncomms7438"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.187001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005585698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.187001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005585698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.79.245116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005970374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.79.245116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005970374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1612591113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006233238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006521670", 
              "https://doi.org/10.1038/nature05872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.3.021019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006713141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.3.021019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006713141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.90.100510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007026814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.90.100510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007026814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms8927", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007397309", 
              "https://doi.org/10.1038/ncomms8927"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1612849113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007587124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.83.054506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008436483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.83.054506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008436483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.90.054514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008641111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.90.054514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008641111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.90.054513", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009240658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.90.054513", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009240658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6875", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009388305", 
              "https://doi.org/10.1038/ncomms6875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.4.031017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009919759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.4.031017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009919759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.87.457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011738856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.87.457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011738856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms3113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019850812", 
              "https://doi.org/10.1038/ncomms3113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev-conmatphys-030212-184305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020617115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.6.021004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028965996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.6.021004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028965996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms10378", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033272025", 
              "https://doi.org/10.1038/ncomms10378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10345", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035778153", 
              "https://doi.org/10.1038/nature10345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035863876", 
              "https://doi.org/10.1038/nphys2502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms4280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036367390", 
              "https://doi.org/10.1038/ncomms4280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.111.027202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036962102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.111.027202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036962102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.90.035149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038087834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.90.035149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038087834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038757133", 
              "https://doi.org/10.1038/ncomms11494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2456", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041283820", 
              "https://doi.org/10.1038/nphys2456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.93.267001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044414624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.93.267001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044414624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.75.473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045026742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.75.473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045026742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00018730903122242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046174367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.113.107002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050877684"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.113.107002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050877684"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0921-4534(00)01524-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051524861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16983", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052674325", 
              "https://doi.org/10.1038/nature16983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/jp1:1997135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056974514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.68.104515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060607471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.68.104515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060607471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.82.134526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060633919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.82.134526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060633919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.92.174505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060647670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.92.174505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060647670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.92.224504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060648153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.92.224504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060648153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1223532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062466776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1246310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062469111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aac6257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062666148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.95.104510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084198048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.95.104510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084198048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.7.031042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091609625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.7.031042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091609625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.119.107002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091655428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.119.107002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091655428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1711445114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093058864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.95.224511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1102596144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.95.224511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1102596144"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "In hole-doped cuprates there is now compelling evidence that inside the pseudogap phase, charge order breaks translational symmetry. In YBa2Cu3Oy charge order emerges in two steps: a 2D order found at zero field and at high temperature inside the pseudogap phase, and a 3D order that is superimposed below the superconducting transition Tc when superconductivity is weakened by a magnetic field. Several issues still need to be addressed such as the effect of disorder, the relationship between those charge orders and their respective impact on the Fermi surface. Here, we report high magnetic field sound velocity measurements of the 3D charge order in underdoped YBa2Cu3Oy in a large doping range. We found that the 3D charge order exists over the same doping range as its 2D counterpart, indicating an intimate connection between the two distinct orders. Moreover, our data suggest that 3D charge order has only a limited impact on low-lying electronic states of YBa2Cu3Oy. The long range charge order observed in underdoped YBCO when superconductivity is weakened by a high magnetic field is found to exist over a similar doping range as the short range charge order found above the superconducting critical Tc. F. Lalibert\u00e9 et al. used ultrasound velocity measurements in high magnetic field to thermodynamically detect the transition towards long range charge order in underdoped YBCO in a large doping range. This systematic study reveals the boundary of the long range charge order dome in the T,p phase diagram of YBCO, which extends over the same doping range as the short range order observed at higher temperatures in zero magnetic field. This indicates an intimate connection between the two kinds of charge modulations. Furthermore, a comparison with Hall effect measurements shows that the onset of long range charge order has a limited impact on low-lying electronic states.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41535-018-0084-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4522059", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1290460", 
            "issn": [
              "2397-4648"
            ], 
            "name": "npj Quantum Materials", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "name": "High field charge order across the phase diagram of YBa2Cu3Oy", 
        "pagination": "11", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e22aecf12947b8c76bb2e4248aa5fa688bef6845cf180333be527d561414a1ca"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41535-018-0084-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1101201648"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41535-018-0084-5", 
          "https://app.dimensions.ai/details/publication/pub.1101201648"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60348_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41535-018-0084-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41535-018-0084-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41535-018-0084-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41535-018-0084-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41535-018-0084-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    300 TRIPLES      21 PREDICATES      75 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41535-018-0084-5 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N48eb5ca85c104b25aa1e85ccb3018795
    4 schema:citation sg:pub.10.1038/nature05872
    5 sg:pub.10.1038/nature06332
    6 sg:pub.10.1038/nature10345
    7 sg:pub.10.1038/nature16983
    8 sg:pub.10.1038/ncomms10378
    9 sg:pub.10.1038/ncomms11494
    10 sg:pub.10.1038/ncomms3113
    11 sg:pub.10.1038/ncomms4280
    12 sg:pub.10.1038/ncomms6875
    13 sg:pub.10.1038/ncomms7438
    14 sg:pub.10.1038/ncomms8927
    15 sg:pub.10.1038/nphys2456
    16 sg:pub.10.1038/nphys2502
    17 sg:pub.10.1038/nphys2641
    18 https://doi.org/10.1016/s0921-4534(00)01524-0
    19 https://doi.org/10.1051/jp1:1997135
    20 https://doi.org/10.1073/pnas.1612591113
    21 https://doi.org/10.1073/pnas.1612849113
    22 https://doi.org/10.1073/pnas.1711445114
    23 https://doi.org/10.1080/00018730903122242
    24 https://doi.org/10.1103/physrevb.68.104515
    25 https://doi.org/10.1103/physrevb.79.245116
    26 https://doi.org/10.1103/physrevb.82.134526
    27 https://doi.org/10.1103/physrevb.83.054506
    28 https://doi.org/10.1103/physrevb.89.224513
    29 https://doi.org/10.1103/physrevb.90.035149
    30 https://doi.org/10.1103/physrevb.90.054513
    31 https://doi.org/10.1103/physrevb.90.054514
    32 https://doi.org/10.1103/physrevb.90.100510
    33 https://doi.org/10.1103/physrevb.92.174505
    34 https://doi.org/10.1103/physrevb.92.224504
    35 https://doi.org/10.1103/physrevb.95.104510
    36 https://doi.org/10.1103/physrevb.95.224511
    37 https://doi.org/10.1103/physrevlett.110.187001
    38 https://doi.org/10.1103/physrevlett.111.027202
    39 https://doi.org/10.1103/physrevlett.113.107002
    40 https://doi.org/10.1103/physrevlett.119.107002
    41 https://doi.org/10.1103/physrevlett.93.267001
    42 https://doi.org/10.1103/physrevx.3.021019
    43 https://doi.org/10.1103/physrevx.4.031017
    44 https://doi.org/10.1103/physrevx.6.021004
    45 https://doi.org/10.1103/physrevx.7.031042
    46 https://doi.org/10.1103/revmodphys.75.473
    47 https://doi.org/10.1103/revmodphys.87.457
    48 https://doi.org/10.1126/science.1223532
    49 https://doi.org/10.1126/science.1246310
    50 https://doi.org/10.1126/science.aac6257
    51 https://doi.org/10.1146/annurev-conmatphys-030212-184305
    52 schema:datePublished 2018-12
    53 schema:datePublishedReg 2018-12-01
    54 schema:description In hole-doped cuprates there is now compelling evidence that inside the pseudogap phase, charge order breaks translational symmetry. In YBa2Cu3Oy charge order emerges in two steps: a 2D order found at zero field and at high temperature inside the pseudogap phase, and a 3D order that is superimposed below the superconducting transition Tc when superconductivity is weakened by a magnetic field. Several issues still need to be addressed such as the effect of disorder, the relationship between those charge orders and their respective impact on the Fermi surface. Here, we report high magnetic field sound velocity measurements of the 3D charge order in underdoped YBa2Cu3Oy in a large doping range. We found that the 3D charge order exists over the same doping range as its 2D counterpart, indicating an intimate connection between the two distinct orders. Moreover, our data suggest that 3D charge order has only a limited impact on low-lying electronic states of YBa2Cu3Oy. The long range charge order observed in underdoped YBCO when superconductivity is weakened by a high magnetic field is found to exist over a similar doping range as the short range charge order found above the superconducting critical Tc. F. Laliberté et al. used ultrasound velocity measurements in high magnetic field to thermodynamically detect the transition towards long range charge order in underdoped YBCO in a large doping range. This systematic study reveals the boundary of the long range charge order dome in the T,p phase diagram of YBCO, which extends over the same doping range as the short range order observed at higher temperatures in zero magnetic field. This indicates an intimate connection between the two kinds of charge modulations. Furthermore, a comparison with Hall effect measurements shows that the onset of long range charge order has a limited impact on low-lying electronic states.
    55 schema:genre research_article
    56 schema:inLanguage en
    57 schema:isAccessibleForFree true
    58 schema:isPartOf N282acec538c64f90acd0e58253c76424
    59 Nbbcae46c446b4dd1895a9a9ca41ec51e
    60 sg:journal.1290460
    61 schema:name High field charge order across the phase diagram of YBa2Cu3Oy
    62 schema:pagination 11
    63 schema:productId N3a12c25cf9bb4a84aae9c6f0d1a99bee
    64 Na318da45610b4b12bc78010a4b38b2ac
    65 Nd1c6eaa8c7ff48c89febd61208d647bd
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101201648
    67 https://doi.org/10.1038/s41535-018-0084-5
    68 schema:sdDatePublished 2019-04-11T11:02
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher N9c6d0084fe154c409f9c37dd024b0646
    71 schema:url https://www.nature.com/articles/s41535-018-0084-5
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N0ace528073d34b0595193a914d1a9415 rdf:first sg:person.01032527303.08
    76 rdf:rest N808919700355406f99e560995e35fcb7
    77 N282acec538c64f90acd0e58253c76424 schema:volumeNumber 3
    78 rdf:type schema:PublicationVolume
    79 N3a12c25cf9bb4a84aae9c6f0d1a99bee schema:name dimensions_id
    80 schema:value pub.1101201648
    81 rdf:type schema:PropertyValue
    82 N43e32e4e278543a6adf9bf7319be60c5 rdf:first sg:person.013743265737.31
    83 rdf:rest Nbd8f5a44cca24c2995be46410efc1131
    84 N48eb5ca85c104b25aa1e85ccb3018795 rdf:first sg:person.01331134054.54
    85 rdf:rest N43e32e4e278543a6adf9bf7319be60c5
    86 N50161e461c3241cd9aec4eb350df3df4 rdf:first sg:person.012472240544.29
    87 rdf:rest N5e2feb9cba914d029d80392fc878bfcb
    88 N5e2feb9cba914d029d80392fc878bfcb rdf:first sg:person.0770255203.92
    89 rdf:rest N9c538879b45948309d24132a34a2a796
    90 N6c421faecde141eaa983c1157bf00992 rdf:first sg:person.015471463265.10
    91 rdf:rest Nb2232583d38a47ac86d05348518e9894
    92 N808919700355406f99e560995e35fcb7 rdf:first sg:person.01337231572.49
    93 rdf:rest N6c421faecde141eaa983c1157bf00992
    94 N9c538879b45948309d24132a34a2a796 rdf:first sg:person.01013477352.56
    95 rdf:rest N0ace528073d34b0595193a914d1a9415
    96 N9c6d0084fe154c409f9c37dd024b0646 schema:name Springer Nature - SN SciGraph project
    97 rdf:type schema:Organization
    98 Na318da45610b4b12bc78010a4b38b2ac schema:name doi
    99 schema:value 10.1038/s41535-018-0084-5
    100 rdf:type schema:PropertyValue
    101 Nb2232583d38a47ac86d05348518e9894 rdf:first sg:person.01205726457.21
    102 rdf:rest Nfbb4a3438d954840bf97602201bfe45e
    103 Nbbcae46c446b4dd1895a9a9ca41ec51e schema:issueNumber 1
    104 rdf:type schema:PublicationIssue
    105 Nbd8f5a44cca24c2995be46410efc1131 rdf:first sg:person.0755752521.08
    106 rdf:rest N50161e461c3241cd9aec4eb350df3df4
    107 Nd1c6eaa8c7ff48c89febd61208d647bd schema:name readcube_id
    108 schema:value e22aecf12947b8c76bb2e4248aa5fa688bef6845cf180333be527d561414a1ca
    109 rdf:type schema:PropertyValue
    110 Nfbb4a3438d954840bf97602201bfe45e rdf:first sg:person.0744271763.95
    111 rdf:rest rdf:nil
    112 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Engineering
    114 rdf:type schema:DefinedTerm
    115 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Materials Engineering
    117 rdf:type schema:DefinedTerm
    118 sg:grant.4522059 http://pending.schema.org/fundedItem sg:pub.10.1038/s41535-018-0084-5
    119 rdf:type schema:MonetaryGrant
    120 sg:journal.1290460 schema:issn 2397-4648
    121 schema:name npj Quantum Materials
    122 rdf:type schema:Periodical
    123 sg:person.01013477352.56 schema:affiliation https://www.grid.ac/institutes/grid.419552.e
    124 schema:familyName Porras
    125 schema:givenName Juan
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013477352.56
    127 rdf:type schema:Person
    128 sg:person.01032527303.08 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
    129 schema:familyName Le Tacon
    130 schema:givenName Mathieu
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032527303.08
    132 rdf:type schema:Person
    133 sg:person.01205726457.21 schema:affiliation https://www.grid.ac/institutes/grid.462694.b
    134 schema:familyName Proust
    135 schema:givenName Cyril
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205726457.21
    137 rdf:type schema:Person
    138 sg:person.012472240544.29 schema:affiliation https://www.grid.ac/institutes/grid.462694.b
    139 schema:familyName Borgnic
    140 schema:givenName Benjamin
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012472240544.29
    142 rdf:type schema:Person
    143 sg:person.01331134054.54 schema:affiliation https://www.grid.ac/institutes/grid.462694.b
    144 schema:familyName Laliberté
    145 schema:givenName Francis
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331134054.54
    147 rdf:type schema:Person
    148 sg:person.01337231572.49 schema:affiliation https://www.grid.ac/institutes/grid.419552.e
    149 schema:familyName Keimer
    150 schema:givenName Bernhard
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337231572.49
    152 rdf:type schema:Person
    153 sg:person.013743265737.31 schema:affiliation https://www.grid.ac/institutes/grid.462694.b
    154 schema:familyName Frachet
    155 schema:givenName Mehdi
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013743265737.31
    157 rdf:type schema:Person
    158 sg:person.015471463265.10 schema:affiliation https://www.grid.ac/institutes/grid.5590.9
    159 schema:familyName Wiedmann
    160 schema:givenName Steffen
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015471463265.10
    162 rdf:type schema:Person
    163 sg:person.0744271763.95 schema:affiliation https://www.grid.ac/institutes/grid.462694.b
    164 schema:familyName LeBoeuf
    165 schema:givenName David
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744271763.95
    167 rdf:type schema:Person
    168 sg:person.0755752521.08 schema:affiliation https://www.grid.ac/institutes/grid.462694.b
    169 schema:familyName Benhabib
    170 schema:givenName Siham
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755752521.08
    172 rdf:type schema:Person
    173 sg:person.0770255203.92 schema:affiliation https://www.grid.ac/institutes/grid.419552.e
    174 schema:familyName Loew
    175 schema:givenName Toshinao
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770255203.92
    177 rdf:type schema:Person
    178 sg:pub.10.1038/nature05872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006521670
    179 https://doi.org/10.1038/nature05872
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/nature06332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002933807
    182 https://doi.org/10.1038/nature06332
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/nature10345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035778153
    185 https://doi.org/10.1038/nature10345
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nature16983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052674325
    188 https://doi.org/10.1038/nature16983
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/ncomms10378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033272025
    191 https://doi.org/10.1038/ncomms10378
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/ncomms11494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038757133
    194 https://doi.org/10.1038/ncomms11494
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/ncomms3113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019850812
    197 https://doi.org/10.1038/ncomms3113
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/ncomms4280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036367390
    200 https://doi.org/10.1038/ncomms4280
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/ncomms6875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009388305
    203 https://doi.org/10.1038/ncomms6875
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/ncomms7438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004253701
    206 https://doi.org/10.1038/ncomms7438
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/ncomms8927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007397309
    209 https://doi.org/10.1038/ncomms8927
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nphys2456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041283820
    212 https://doi.org/10.1038/nphys2456
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/nphys2502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035863876
    215 https://doi.org/10.1038/nphys2502
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nphys2641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002153810
    218 https://doi.org/10.1038/nphys2641
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/s0921-4534(00)01524-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051524861
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1051/jp1:1997135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056974514
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1073/pnas.1612591113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006233238
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1073/pnas.1612849113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007587124
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1073/pnas.1711445114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093058864
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1080/00018730903122242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046174367
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1103/physrevb.68.104515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060607471
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1103/physrevb.79.245116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005970374
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1103/physrevb.82.134526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060633919
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1103/physrevb.83.054506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008436483
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1103/physrevb.89.224513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002141850
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1103/physrevb.90.035149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038087834
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1103/physrevb.90.054513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009240658
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1103/physrevb.90.054514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008641111
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1103/physrevb.90.100510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007026814
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1103/physrevb.92.174505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060647670
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1103/physrevb.92.224504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060648153
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1103/physrevb.95.104510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084198048
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1103/physrevb.95.224511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102596144
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1103/physrevlett.110.187001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005585698
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1103/physrevlett.111.027202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036962102
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1103/physrevlett.113.107002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050877684
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1103/physrevlett.119.107002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091655428
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1103/physrevlett.93.267001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044414624
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1103/physrevx.3.021019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006713141
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1103/physrevx.4.031017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009919759
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1103/physrevx.6.021004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028965996
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1103/physrevx.7.031042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091609625
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1103/revmodphys.75.473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045026742
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1103/revmodphys.87.457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011738856
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1126/science.1223532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062466776
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1126/science.1246310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062469111
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1126/science.aac6257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062666148
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1146/annurev-conmatphys-030212-184305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020617115
    287 rdf:type schema:CreativeWork
    288 https://www.grid.ac/institutes/grid.419552.e schema:alternateName Max Planck Institute for Solid State Research
    289 schema:name Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569, Stuttgart, Germany
    290 rdf:type schema:Organization
    291 https://www.grid.ac/institutes/grid.462694.b schema:alternateName French National High Magnetic Field Laboratory
    292 schema:name Laboratoire National des Champs Magnétiques Intenses (LNCMI-EMFL), (CNRS-INSA-UGA-UPS), 31400/38042, Toulouse/Grenoble, France
    293 rdf:type schema:Organization
    294 https://www.grid.ac/institutes/grid.5590.9 schema:alternateName Radboud University Nijmegen
    295 schema:name High Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
    296 rdf:type schema:Organization
    297 https://www.grid.ac/institutes/grid.7892.4 schema:alternateName Karlsruhe Institute of Technology
    298 schema:name Karlsruher Institut für Technologie, Institut für Festkörperphysik, D-76344, Eggenstein-Leopoldshafen, Germany
    299 Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569, Stuttgart, Germany
    300 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...