Excitations in the field-induced quantum spin liquid state of α-RuCl3 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Arnab Banerjee, Paula Lampen-Kelley, Johannes Knolle, Christian Balz, Adam Anthony Aczel, Barry Winn, Yaohua Liu, Daniel Pajerowski, Jiaqiang Yan, Craig A. Bridges, Andrei T. Savici, Bryan C. Chakoumakos, Mark D. Lumsden, David Alan Tennant, Roderich Moessner, David G. Mandrus, Stephen E. Nagler

ABSTRACT

The celebrated Kitaev quantum spin liquid (QSL) is the paradigmatic example of a topological magnet with emergent excitations in the form of Majorana Fermions and gauge fluxes. Upon breaking of time-reversal symmetry, for example in an external magnetic field, these fractionalized quasiparticles acquire non-Abelian exchange statistics, an important ingredient for topologically protected quantum computing. Consequently, there has been enormous interest in exploring possible material realizations of Kitaev physics and several candidate materials have been put forward, recently including α-RuCl3. In the absence of a magnetic field this material orders at a finite temperature and exhibits low-energy spin wave excitations. However, at moderate energies, the spectrum is unconventional and the response shows evidence for fractional excitations. Here we use time-of-flight inelastic neutron scattering to show that the application of a sufficiently large magnetic field in the honeycomb plane suppresses the magnetic order and the spin waves, leaving a gapped continuum spectrum of magnetic excitations. Our comparisons of the scattering to the available calculations for a Kitaev QSL show that they are consistent with the magnetic field induced QSL phase. A sufficiently large magnetic field suppresses long-range magnetic order in α-RuCl3, leaving a disordered state with a gapped continuum spectrum of magnetic excitations, similar to that expected for the famous Kitaev quantum spin liquid. An international team led by Stephen E. Nagler from Oak Ridge National Laboratory in the USA performed time-of-flight neutron scattering to study low energy magnetic excitations of α-RuCl3. They observed that the application of a sufficiently large magnetic field to this material suppressed spin waves associated with the long-range order, and drove it to an unusual excited state. By comparison with calculations, these results are consistent with the Kitaev quantum spin liquid state in a magnetic field. The results provide important information of a possible route to producing gapped excitations related to magnetic Majorana Fermions towards topologically protected quantum computation. More... »

PAGES

8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41535-018-0079-2

DOI

http://dx.doi.org/10.1038/s41535-018-0079-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100951705


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Quantum Condensed Matter Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
            "Neutron Scattering Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Banerjee", 
        "givenName": "Arnab", 
        "id": "sg:person.0771267451.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771267451.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tennessee at Knoxville", 
          "id": "https://www.grid.ac/institutes/grid.411461.7", 
          "name": [
            "Materials Science and Technology Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
            "Department of Materials Science and Engineering, University of Tennessee, 37996, Knoxville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lampen-Kelley", 
        "givenName": "Paula", 
        "id": "sg:person.01176612371.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176612371.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Physics, Cavendish Laboratory, JJ Thomson Avenue, CB3 0HE, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knolle", 
        "givenName": "Johannes", 
        "id": "sg:person.0716336407.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716336407.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Quantum Condensed Matter Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
            "Neutron Scattering Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balz", 
        "givenName": "Christian", 
        "id": "sg:person.012510235473.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012510235473.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Quantum Condensed Matter Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
            "Neutron Scattering Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aczel", 
        "givenName": "Adam Anthony", 
        "id": "sg:person.01046440664.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046440664.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Quantum Condensed Matter Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
            "Neutron Scattering Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Winn", 
        "givenName": "Barry", 
        "id": "sg:person.0764674547.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764674547.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Quantum Condensed Matter Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
            "Neutron Scattering Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yaohua", 
        "id": "sg:person.016263630045.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016263630045.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Quantum Condensed Matter Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
            "Neutron Scattering Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pajerowski", 
        "givenName": "Daniel", 
        "id": "sg:person.01221161000.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221161000.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tennessee at Knoxville", 
          "id": "https://www.grid.ac/institutes/grid.411461.7", 
          "name": [
            "Materials Science and Technology Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
            "Department of Materials Science and Engineering, University of Tennessee, 37996, Knoxville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Jiaqiang", 
        "id": "sg:person.01060063456.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060063456.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Chemical Sciences Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bridges", 
        "givenName": "Craig A.", 
        "id": "sg:person.014424316120.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424316120.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Neutron Scattering Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
            "Neutron Data Analysis and Visualization Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Savici", 
        "givenName": "Andrei T.", 
        "id": "sg:person.01032377245.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032377245.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Quantum Condensed Matter Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
            "Neutron Scattering Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chakoumakos", 
        "givenName": "Bryan C.", 
        "id": "sg:person.01340512725.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340512725.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Quantum Condensed Matter Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
            "Neutron Scattering Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lumsden", 
        "givenName": "Mark D.", 
        "id": "sg:person.01367315414.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367315414.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Quantum Condensed Matter Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
            "Neutron Scattering Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tennant", 
        "givenName": "David Alan", 
        "id": "sg:person.0761210450.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761210450.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Max Planck Institute for the Physics of Complex Systems, D-01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moessner", 
        "givenName": "Roderich", 
        "id": "sg:person.01272305540.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272305540.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tennessee at Knoxville", 
          "id": "https://www.grid.ac/institutes/grid.411461.7", 
          "name": [
            "Materials Science and Technology Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
            "Department of Materials Science and Engineering, University of Tennessee, 37996, Knoxville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mandrus", 
        "givenName": "David G.", 
        "id": "sg:person.0700616314.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700616314.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Quantum Condensed Matter Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
            "Neutron Scattering Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagler", 
        "givenName": "Stephen E.", 
        "id": "sg:person.0615626042.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615626042.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.112.207203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010777408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.207203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010777408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/epjconf/20158303017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012970906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014687062", 
          "https://doi.org/10.1038/nmat4604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014929829", 
          "https://doi.org/10.1038/nphys3809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-4916(02)00018-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015449553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-4916(02)00018-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015449553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2014.07.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015760876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2014.07.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015760876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2014.07.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015760876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2014.07.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015760876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.144420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022607953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.144420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022607953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aop.2005.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025107810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.017205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026932870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.017205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026932870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.041112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027865283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.041112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027865283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.80.1083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028121061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.80.1083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028121061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep37925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032367920", 
          "https://doi.org/10.1038/srep37925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.094422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040867753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.094422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040867753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12043-008-0259-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041919870", 
          "https://doi.org/10.1007/s12043-008-0259-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12043-008-0259-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041919870", 
          "https://doi.org/10.1007/s12043-008-0259-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045529937", 
          "https://doi.org/10.1038/nmat1327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045529937", 
          "https://doi.org/10.1038/nmat1327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052242046", 
          "https://doi.org/10.1038/nphys3322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.115127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.115127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.235119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060648185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.235119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060648185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.134423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.134423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.147201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.147201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.037209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.037209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.157203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060766520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.157203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060766520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.107203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084199151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.107203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084199151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.187203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085345475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.187203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085345475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.180411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085784082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.180411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085784082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aah6015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085942240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.041405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090708304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.041405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090708304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.037201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090784024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.037201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090784024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21468/scipostphys.3.3.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091660861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091665565", 
          "https://doi.org/10.1038/nphys4264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091665565", 
          "https://doi.org/10.1038/nphys4264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.134408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092120488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.134408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092120488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-01071-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092152762", 
          "https://doi.org/10.1038/s41467-017-01071-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.161107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092202426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.161107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092202426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.157203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092202458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.157203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092202458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.227201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093068154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.227201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093068154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.227208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093143730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.227208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093143730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.120.077203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101062444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.120.077203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101062444"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The celebrated Kitaev quantum spin liquid (QSL) is the paradigmatic example of a topological magnet with emergent excitations in the form of Majorana Fermions and gauge fluxes. Upon breaking of time-reversal symmetry, for example in an external magnetic field, these fractionalized quasiparticles acquire non-Abelian exchange statistics, an important ingredient for topologically protected quantum computing. Consequently, there has been enormous interest in exploring possible material realizations of Kitaev physics and several candidate materials have been put forward, recently including \u03b1-RuCl3. In the absence of a magnetic field this material orders at a finite temperature and exhibits low-energy spin wave excitations. However, at moderate energies, the spectrum is unconventional and the response shows evidence for fractional excitations. Here we use time-of-flight inelastic neutron scattering to show that the application of a sufficiently large magnetic field in the honeycomb plane suppresses the magnetic order and the spin waves, leaving a gapped continuum spectrum of magnetic excitations. Our comparisons of the scattering to the available calculations for a Kitaev QSL show that they are consistent with the magnetic field induced QSL phase. A sufficiently large magnetic field suppresses long-range magnetic order in \u03b1-RuCl3, leaving a disordered state with a gapped continuum spectrum of magnetic excitations, similar to that expected for the famous Kitaev quantum spin liquid. An international team led by Stephen E. Nagler from Oak Ridge National Laboratory in the USA performed time-of-flight neutron scattering to study low energy magnetic excitations of \u03b1-RuCl3. They observed that the application of a sufficiently large magnetic field to this material suppressed spin waves associated with the long-range order, and drove it to an unusual excited state. By comparison with calculations, these results are consistent with the Kitaev quantum spin liquid state in a magnetic field. The results provide important information of a possible route to producing gapped excitations related to magnetic Majorana Fermions towards topologically protected quantum computation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41535-018-0079-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5495008", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4111841", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1290460", 
        "issn": [
          "2397-4648"
        ], 
        "name": "npj Quantum Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Excitations in the field-induced quantum spin liquid state of \u03b1-RuCl3", 
    "pagination": "8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ef2d734f6d038aba1aa0dc25158c682fae4de7e90513a5fe1bfd0ecc0bb0d5d2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41535-018-0079-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100951705"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41535-018-0079-2", 
      "https://app.dimensions.ai/details/publication/pub.1100951705"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47967_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41535-018-0079-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41535-018-0079-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41535-018-0079-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41535-018-0079-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41535-018-0079-2'


 

This table displays all metadata directly associated to this object as RDF triples.

308 TRIPLES      21 PREDICATES      64 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41535-018-0079-2 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N94eebc009eba4d6ca4f7a3e25f4366ec
4 schema:citation sg:pub.10.1007/s12043-008-0259-x
5 sg:pub.10.1038/nmat1327
6 sg:pub.10.1038/nmat4604
7 sg:pub.10.1038/nphys3322
8 sg:pub.10.1038/nphys3809
9 sg:pub.10.1038/nphys4264
10 sg:pub.10.1038/s41467-017-01071-9
11 sg:pub.10.1038/srep37925
12 https://doi.org/10.1016/j.aop.2005.10.005
13 https://doi.org/10.1016/j.nima.2014.07.029
14 https://doi.org/10.1016/s0003-4916(02)00018-0
15 https://doi.org/10.1051/epjconf/20158303017
16 https://doi.org/10.1103/physrevb.90.041112
17 https://doi.org/10.1103/physrevb.91.094422
18 https://doi.org/10.1103/physrevb.91.144420
19 https://doi.org/10.1103/physrevb.92.115127
20 https://doi.org/10.1103/physrevb.92.235119
21 https://doi.org/10.1103/physrevb.93.134423
22 https://doi.org/10.1103/physrevb.95.180411
23 https://doi.org/10.1103/physrevb.96.041405
24 https://doi.org/10.1103/physrevb.96.134408
25 https://doi.org/10.1103/physrevb.96.161107
26 https://doi.org/10.1103/physrevlett.102.017205
27 https://doi.org/10.1103/physrevlett.112.207203
28 https://doi.org/10.1103/physrevlett.114.147201
29 https://doi.org/10.1103/physrevlett.117.037209
30 https://doi.org/10.1103/physrevlett.117.157203
31 https://doi.org/10.1103/physrevlett.118.107203
32 https://doi.org/10.1103/physrevlett.118.187203
33 https://doi.org/10.1103/physrevlett.119.037201
34 https://doi.org/10.1103/physrevlett.119.157203
35 https://doi.org/10.1103/physrevlett.119.227201
36 https://doi.org/10.1103/physrevlett.119.227208
37 https://doi.org/10.1103/physrevlett.120.077203
38 https://doi.org/10.1103/revmodphys.80.1083
39 https://doi.org/10.1126/science.aah6015
40 https://doi.org/10.21468/scipostphys.3.3.021
41 schema:datePublished 2018-12
42 schema:datePublishedReg 2018-12-01
43 schema:description The celebrated Kitaev quantum spin liquid (QSL) is the paradigmatic example of a topological magnet with emergent excitations in the form of Majorana Fermions and gauge fluxes. Upon breaking of time-reversal symmetry, for example in an external magnetic field, these fractionalized quasiparticles acquire non-Abelian exchange statistics, an important ingredient for topologically protected quantum computing. Consequently, there has been enormous interest in exploring possible material realizations of Kitaev physics and several candidate materials have been put forward, recently including α-RuCl3. In the absence of a magnetic field this material orders at a finite temperature and exhibits low-energy spin wave excitations. However, at moderate energies, the spectrum is unconventional and the response shows evidence for fractional excitations. Here we use time-of-flight inelastic neutron scattering to show that the application of a sufficiently large magnetic field in the honeycomb plane suppresses the magnetic order and the spin waves, leaving a gapped continuum spectrum of magnetic excitations. Our comparisons of the scattering to the available calculations for a Kitaev QSL show that they are consistent with the magnetic field induced QSL phase. A sufficiently large magnetic field suppresses long-range magnetic order in α-RuCl3, leaving a disordered state with a gapped continuum spectrum of magnetic excitations, similar to that expected for the famous Kitaev quantum spin liquid. An international team led by Stephen E. Nagler from Oak Ridge National Laboratory in the USA performed time-of-flight neutron scattering to study low energy magnetic excitations of α-RuCl3. They observed that the application of a sufficiently large magnetic field to this material suppressed spin waves associated with the long-range order, and drove it to an unusual excited state. By comparison with calculations, these results are consistent with the Kitaev quantum spin liquid state in a magnetic field. The results provide important information of a possible route to producing gapped excitations related to magnetic Majorana Fermions towards topologically protected quantum computation.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf N0c45a57b7ede4b82a435a0815f69fb6b
48 N42c71d191337413b94ca50654d8290da
49 sg:journal.1290460
50 schema:name Excitations in the field-induced quantum spin liquid state of α-RuCl3
51 schema:pagination 8
52 schema:productId N45b0a456a8ce41fda69f2876992c72f9
53 N67b0e9eee8cf45c1b6d4fa6467ed3a33
54 Nae9f6c352b5f4ecf9a09e651409c4b30
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100951705
56 https://doi.org/10.1038/s41535-018-0079-2
57 schema:sdDatePublished 2019-04-11T09:10
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N30dbf881407843f5ad8f649d53a5aced
60 schema:url https://www.nature.com/articles/s41535-018-0079-2
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N0199fa7c3cf64834aa3f6efddb59d12f rdf:first sg:person.0700616314.52
65 rdf:rest N802608b961a3487ca38f819623c533f6
66 N0c45a57b7ede4b82a435a0815f69fb6b schema:volumeNumber 3
67 rdf:type schema:PublicationVolume
68 N25efc5a2b65a45dc95c5339b6d9d8b29 rdf:first sg:person.01272305540.63
69 rdf:rest N0199fa7c3cf64834aa3f6efddb59d12f
70 N276232de5b4c438e94ddcaaa6b04aeeb rdf:first sg:person.01060063456.55
71 rdf:rest N50cd94e5cc5146848ea675493d51b4db
72 N309286a778dd41e485e1c223e2818700 rdf:first sg:person.016263630045.44
73 rdf:rest N63376abd74c24a8d891c7599d4f7735f
74 N30dbf881407843f5ad8f649d53a5aced schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N42c71d191337413b94ca50654d8290da schema:issueNumber 1
77 rdf:type schema:PublicationIssue
78 N45b0a456a8ce41fda69f2876992c72f9 schema:name dimensions_id
79 schema:value pub.1100951705
80 rdf:type schema:PropertyValue
81 N50cd94e5cc5146848ea675493d51b4db rdf:first sg:person.014424316120.19
82 rdf:rest N79c67382b7a64ff2812daa890bcdd65f
83 N63376abd74c24a8d891c7599d4f7735f rdf:first sg:person.01221161000.74
84 rdf:rest N276232de5b4c438e94ddcaaa6b04aeeb
85 N66c13ddbb61b4f1c976a60141aaed50c rdf:first sg:person.01046440664.60
86 rdf:rest N6a9526fa8c0a4996a9bd4d180b9ceab7
87 N67b0e9eee8cf45c1b6d4fa6467ed3a33 schema:name doi
88 schema:value 10.1038/s41535-018-0079-2
89 rdf:type schema:PropertyValue
90 N6a9526fa8c0a4996a9bd4d180b9ceab7 rdf:first sg:person.0764674547.72
91 rdf:rest N309286a778dd41e485e1c223e2818700
92 N6d6eee26233c4f7aa8e000794235926b rdf:first sg:person.0716336407.99
93 rdf:rest Nd77595faf7304d8ba6e4ebd715be8f25
94 N79c67382b7a64ff2812daa890bcdd65f rdf:first sg:person.01032377245.62
95 rdf:rest Neb75533d2d40483598a07c516b90f617
96 N802608b961a3487ca38f819623c533f6 rdf:first sg:person.0615626042.75
97 rdf:rest rdf:nil
98 N94eebc009eba4d6ca4f7a3e25f4366ec rdf:first sg:person.0771267451.10
99 rdf:rest Ne308418a868142f48d735d93b1e8dc1d
100 Nad88ef81805847ab8024006df6f33682 rdf:first sg:person.0761210450.57
101 rdf:rest N25efc5a2b65a45dc95c5339b6d9d8b29
102 Nae9f6c352b5f4ecf9a09e651409c4b30 schema:name readcube_id
103 schema:value ef2d734f6d038aba1aa0dc25158c682fae4de7e90513a5fe1bfd0ecc0bb0d5d2
104 rdf:type schema:PropertyValue
105 Nd1b67c4e88aa496b995b52b570eb62a9 rdf:first sg:person.01367315414.63
106 rdf:rest Nad88ef81805847ab8024006df6f33682
107 Nd77595faf7304d8ba6e4ebd715be8f25 rdf:first sg:person.012510235473.31
108 rdf:rest N66c13ddbb61b4f1c976a60141aaed50c
109 Ne308418a868142f48d735d93b1e8dc1d rdf:first sg:person.01176612371.48
110 rdf:rest N6d6eee26233c4f7aa8e000794235926b
111 Neb75533d2d40483598a07c516b90f617 rdf:first sg:person.01340512725.32
112 rdf:rest Nd1b67c4e88aa496b995b52b570eb62a9
113 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
114 schema:name Physical Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
117 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
118 rdf:type schema:DefinedTerm
119 sg:grant.4111841 http://pending.schema.org/fundedItem sg:pub.10.1038/s41535-018-0079-2
120 rdf:type schema:MonetaryGrant
121 sg:grant.5495008 http://pending.schema.org/fundedItem sg:pub.10.1038/s41535-018-0079-2
122 rdf:type schema:MonetaryGrant
123 sg:journal.1290460 schema:issn 2397-4648
124 schema:name npj Quantum Materials
125 rdf:type schema:Periodical
126 sg:person.01032377245.62 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
127 schema:familyName Savici
128 schema:givenName Andrei T.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032377245.62
130 rdf:type schema:Person
131 sg:person.01046440664.60 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
132 schema:familyName Aczel
133 schema:givenName Adam Anthony
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046440664.60
135 rdf:type schema:Person
136 sg:person.01060063456.55 schema:affiliation https://www.grid.ac/institutes/grid.411461.7
137 schema:familyName Yan
138 schema:givenName Jiaqiang
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060063456.55
140 rdf:type schema:Person
141 sg:person.01176612371.48 schema:affiliation https://www.grid.ac/institutes/grid.411461.7
142 schema:familyName Lampen-Kelley
143 schema:givenName Paula
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176612371.48
145 rdf:type schema:Person
146 sg:person.01221161000.74 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
147 schema:familyName Pajerowski
148 schema:givenName Daniel
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221161000.74
150 rdf:type schema:Person
151 sg:person.012510235473.31 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
152 schema:familyName Balz
153 schema:givenName Christian
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012510235473.31
155 rdf:type schema:Person
156 sg:person.01272305540.63 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
157 schema:familyName Moessner
158 schema:givenName Roderich
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272305540.63
160 rdf:type schema:Person
161 sg:person.01340512725.32 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
162 schema:familyName Chakoumakos
163 schema:givenName Bryan C.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340512725.32
165 rdf:type schema:Person
166 sg:person.01367315414.63 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
167 schema:familyName Lumsden
168 schema:givenName Mark D.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367315414.63
170 rdf:type schema:Person
171 sg:person.014424316120.19 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
172 schema:familyName Bridges
173 schema:givenName Craig A.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424316120.19
175 rdf:type schema:Person
176 sg:person.016263630045.44 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
177 schema:familyName Liu
178 schema:givenName Yaohua
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016263630045.44
180 rdf:type schema:Person
181 sg:person.0615626042.75 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
182 schema:familyName Nagler
183 schema:givenName Stephen E.
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615626042.75
185 rdf:type schema:Person
186 sg:person.0700616314.52 schema:affiliation https://www.grid.ac/institutes/grid.411461.7
187 schema:familyName Mandrus
188 schema:givenName David G.
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700616314.52
190 rdf:type schema:Person
191 sg:person.0716336407.99 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
192 schema:familyName Knolle
193 schema:givenName Johannes
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716336407.99
195 rdf:type schema:Person
196 sg:person.0761210450.57 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
197 schema:familyName Tennant
198 schema:givenName David Alan
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761210450.57
200 rdf:type schema:Person
201 sg:person.0764674547.72 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
202 schema:familyName Winn
203 schema:givenName Barry
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764674547.72
205 rdf:type schema:Person
206 sg:person.0771267451.10 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
207 schema:familyName Banerjee
208 schema:givenName Arnab
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771267451.10
210 rdf:type schema:Person
211 sg:pub.10.1007/s12043-008-0259-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041919870
212 https://doi.org/10.1007/s12043-008-0259-x
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/nmat1327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045529937
215 https://doi.org/10.1038/nmat1327
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/nmat4604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014687062
218 https://doi.org/10.1038/nmat4604
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/nphys3322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052242046
221 https://doi.org/10.1038/nphys3322
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/nphys3809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014929829
224 https://doi.org/10.1038/nphys3809
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/nphys4264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091665565
227 https://doi.org/10.1038/nphys4264
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/s41467-017-01071-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092152762
230 https://doi.org/10.1038/s41467-017-01071-9
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/srep37925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032367920
233 https://doi.org/10.1038/srep37925
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.aop.2005.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025107810
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/j.nima.2014.07.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015760876
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/s0003-4916(02)00018-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015449553
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1051/epjconf/20158303017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012970906
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1103/physrevb.90.041112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027865283
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1103/physrevb.91.094422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040867753
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1103/physrevb.91.144420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022607953
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1103/physrevb.92.115127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060647080
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1103/physrevb.92.235119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060648185
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1103/physrevb.93.134423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060649696
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1103/physrevb.95.180411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085784082
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1103/physrevb.96.041405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090708304
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1103/physrevb.96.134408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092120488
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1103/physrevb.96.161107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092202426
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1103/physrevlett.102.017205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026932870
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1103/physrevlett.112.207203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010777408
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1103/physrevlett.114.147201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060763540
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1103/physrevlett.117.037209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060765940
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1103/physrevlett.117.157203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060766520
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1103/physrevlett.118.107203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084199151
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1103/physrevlett.118.187203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085345475
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1103/physrevlett.119.037201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090784024
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1103/physrevlett.119.157203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092202458
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1103/physrevlett.119.227201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093068154
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1103/physrevlett.119.227208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093143730
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1103/physrevlett.120.077203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101062444
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1103/revmodphys.80.1083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028121061
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1126/science.aah6015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085942240
290 rdf:type schema:CreativeWork
291 https://doi.org/10.21468/scipostphys.3.3.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091660861
292 rdf:type schema:CreativeWork
293 https://www.grid.ac/institutes/grid.135519.a schema:alternateName Oak Ridge National Laboratory
294 schema:name Chemical Sciences Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
295 Neutron Data Analysis and Visualization Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
296 Neutron Scattering Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
297 Quantum Condensed Matter Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
298 rdf:type schema:Organization
299 https://www.grid.ac/institutes/grid.411461.7 schema:alternateName University of Tennessee at Knoxville
300 schema:name Department of Materials Science and Engineering, University of Tennessee, 37996, Knoxville, TN, USA
301 Materials Science and Technology Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
302 rdf:type schema:Organization
303 https://www.grid.ac/institutes/grid.419560.f schema:alternateName Max Planck Institute for the Physics of Complex Systems
304 schema:name Max Planck Institute for the Physics of Complex Systems, D-01187, Dresden, Germany
305 rdf:type schema:Organization
306 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
307 schema:name Department of Physics, Cavendish Laboratory, JJ Thomson Avenue, CB3 0HE, Cambridge, UK
308 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...