Pressure-induced superconductivity and topological quantum phase transitions in a quasi-one-dimensional topological insulator: Bi4I4 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Yanpeng Qi, Wujun Shi, Peter Werner, Pavel G. Naumov, Walter Schnelle, Lei Wang, Kumari Gaurav Rana, Stuart Parkin, Sergiy A. Medvedev, Binghai Yan, Claudia Felser

ABSTRACT

Superconductivity and topological quantum states are two frontier fields of research in modern condensed matter physics. The realization of superconductivity in topological materials is highly desired; however, superconductivity in such materials is typically limited to two-dimensional or three-dimensional materials and is far from being thoroughly investigated. In this work, we boost the electronic properties of the quasi-one-dimensional topological insulator bismuth iodide β-Bi4I4 by applying high pressure. Superconductivity is observed in β-Bi4I4 for pressures, where the temperature dependence of the resistivity changes from a semiconducting-like behavior to that of a normal metal. The superconducting transition temperature Tc increases with applied pressure and reaches a maximum value of 6 K at 23 GPa, followed by a slow decrease. Our theoretical calculations suggest the presence of multiple pressure-induced topological quantum phase transitions as well as a structural–electronic instability. Pressure-induced superconductivity is observed in topological insulator β-Bi4I4, and multiple topological phase transitions are predicted from ab initio calculations. An international team led by Binghai Yan and Claudia Felser from Max Planck Institute for Chemical Physics of Solids in Germany investigated the high-pressure behavior of the quasi-one-dimensional topological insulator β-Bi4I4. The resistivity under pressure shows a semiconductor-to-metal transition, followed by zero resistivity above 17.6 GPa, indicating the emergence of superconductivity. The critical transition temperature reaches a maximum of 6 K at 23 GPa. Ab initio calculations suggest multiple topological phase transitions, which show corresponding anomalies in the pressure-dependent resistivity data. These results are helpful in making β-Bi4I4 a promising candidate of possible topological superconductivity, which is a first step to quantum computation. More... »

PAGES

4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41535-018-0078-3

DOI

http://dx.doi.org/10.1038/s41535-018-0078-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100570915


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "ShanghaiTech University", 
          "id": "https://www.grid.ac/institutes/grid.440637.2", 
          "name": [
            "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany", 
            "School of Physical Science and Technology, ShanghaiTech University, 200031, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qi", 
        "givenName": "Yanpeng", 
        "id": "sg:person.0644442410.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644442410.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ShanghaiTech University", 
          "id": "https://www.grid.ac/institutes/grid.440637.2", 
          "name": [
            "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany", 
            "School of Physical Science and Technology, ShanghaiTech University, 200031, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Wujun", 
        "id": "sg:person.014635230117.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014635230117.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Microstructure Physics", 
          "id": "https://www.grid.ac/institutes/grid.450270.4", 
          "name": [
            "Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Werner", 
        "givenName": "Peter", 
        "id": "sg:person.0703230070.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703230070.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany", 
            "Shubnikov Institute of Crystallography of Federal Scientific Research Centre \u201cCrystallography and Photonics\u201d of Russian Academy of Sciences, 119333, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naumov", 
        "givenName": "Pavel G.", 
        "id": "sg:person.0647744654.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647744654.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schnelle", 
        "givenName": "Walter", 
        "id": "sg:person.0776172552.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776172552.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North West Agriculture and Forestry University", 
          "id": "https://www.grid.ac/institutes/grid.144022.1", 
          "name": [
            "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany", 
            "Department of Power and Electrical Engineering, Northwest A&F University, 712100, Yangling, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Lei", 
        "id": "sg:person.013146334221.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013146334221.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Microstructure Physics", 
          "id": "https://www.grid.ac/institutes/grid.450270.4", 
          "name": [
            "Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rana", 
        "givenName": "Kumari Gaurav", 
        "id": "sg:person.01107515006.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107515006.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Microstructure Physics", 
          "id": "https://www.grid.ac/institutes/grid.450270.4", 
          "name": [
            "Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parkin", 
        "givenName": "Stuart", 
        "id": "sg:person.014272747332.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014272747332.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Medvedev", 
        "givenName": "Sergiy A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany", 
            "School of Physical Science and Technology, ShanghaiTech University, 200031, Shanghai, China", 
            "Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Binghai", 
        "id": "sg:person.01051315016.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051315016.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Felser", 
        "givenName": "Claudia", 
        "id": "sg:person.0710676154.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710676154.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep02016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000821018", 
          "https://doi.org/10.1038/srep02016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001727260", 
          "https://doi.org/10.1038/nmat4455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.081106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001731127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.081106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001731127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.057001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001751749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.057001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001751749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/npjquantmats.2016.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002127999", 
          "https://doi.org/10.1038/npjquantmats.2016.14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3382344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002352738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002373186", 
          "https://doi.org/10.1038/nmat3990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.106803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003001378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.106803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003001378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.3045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004083979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.3045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004083979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1014085108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004904925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.127205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006809835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.127205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006809835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007145887", 
          "https://doi.org/10.1038/ncomms8805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.140405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008952392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.140405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008952392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014339415", 
          "https://doi.org/10.1038/nmat4488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.246402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015660837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.246402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015660837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.027603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016127489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.027603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016127489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.140504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017453503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.140504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017453503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.146601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019417419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.146601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019417419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020075859", 
          "https://doi.org/10.1038/ncomms8804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.186806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020322294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.186806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020322294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.195320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023105171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.195320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023105171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.205101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025277884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.205101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025277884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1601262113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026375010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature15768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028100728", 
          "https://doi.org/10.1038/nature15768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jb091ib05p04673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028480620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.045302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031979890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.045302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031979890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032808151", 
          "https://doi.org/10.1038/ncomms8373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms11038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033331309", 
          "https://doi.org/10.1038/ncomms11038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.011029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034242879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.011029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034242879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.21759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036741104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.30.9.244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040695694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2007.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041208656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.127004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041616611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.127004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041616611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/zaac.19784380104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045078635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.1057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045115933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.1057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045115933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046375511", 
          "https://doi.org/10.1038/nmat4456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/25/36/362204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048059565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.125427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050056339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.125427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050056339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050812169", 
          "https://doi.org/10.1038/nmat4143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jssc.2007.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053403539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1564060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057720612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1668634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057745445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.147.295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060433136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.147.295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060433136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.134106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060626228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.134106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060626228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.125126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060644619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.125126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060644619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.161107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.161107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.054517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060651512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.054517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060651512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.087001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060761962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.087001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060761962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.066801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.066801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1245085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062469056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1256742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062470143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scib.2017.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083899969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201605965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084007253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.024510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084603947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.024510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084603947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-01967-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085224597", 
          "https://doi.org/10.1038/s41598-017-01967-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.235149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1087291356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.235149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1087291356"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Superconductivity and topological quantum states are two frontier fields of research in modern condensed matter physics. The realization of superconductivity in topological materials is highly desired; however, superconductivity in such materials is typically limited to two-dimensional or three-dimensional materials and is far from being thoroughly investigated. In this work, we boost the electronic properties of the quasi-one-dimensional topological insulator bismuth iodide \u03b2-Bi4I4 by applying high pressure. Superconductivity is observed in \u03b2-Bi4I4 for pressures, where the temperature dependence of the resistivity changes from a semiconducting-like behavior to that of a normal metal. The superconducting transition temperature Tc increases with applied pressure and reaches a maximum value of 6 K at 23 GPa, followed by a slow decrease. Our theoretical calculations suggest the presence of multiple pressure-induced topological quantum phase transitions as well as a structural\u2013electronic instability. Pressure-induced superconductivity is observed in topological insulator \u03b2-Bi4I4, and multiple topological phase transitions are predicted from ab initio calculations. An international team led by Binghai Yan and Claudia Felser from Max Planck Institute for Chemical Physics of Solids in Germany investigated the high-pressure behavior of the quasi-one-dimensional topological insulator \u03b2-Bi4I4. The resistivity under pressure shows a semiconductor-to-metal transition, followed by zero resistivity above 17.6 GPa, indicating the emergence of superconductivity. The critical transition temperature reaches a maximum of 6 K at 23 GPa. Ab initio calculations suggest multiple topological phase transitions, which show corresponding anomalies in the pressure-dependent resistivity data. These results are helpful in making \u03b2-Bi4I4 a promising candidate of possible topological superconductivity, which is a first step to quantum computation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41535-018-0078-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3789637", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1290460", 
        "issn": [
          "2397-4648"
        ], 
        "name": "npj Quantum Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Pressure-induced superconductivity and topological quantum phase transitions in a quasi-one-dimensional topological insulator: Bi4I4", 
    "pagination": "4", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a00e23f8a80ea668039105f5a56527166b53fb52949d4eb07003d25c613622e7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41535-018-0078-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100570915"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41535-018-0078-3", 
      "https://app.dimensions.ai/details/publication/pub.1100570915"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41535-018-0078-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41535-018-0078-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41535-018-0078-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41535-018-0078-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41535-018-0078-3'


 

This table displays all metadata directly associated to this object as RDF triples.

341 TRIPLES      21 PREDICATES      87 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41535-018-0078-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N715e442e3332409aa351e810337e19fb
4 schema:citation sg:pub.10.1038/nature15768
5 sg:pub.10.1038/ncomms11038
6 sg:pub.10.1038/ncomms8373
7 sg:pub.10.1038/ncomms8804
8 sg:pub.10.1038/ncomms8805
9 sg:pub.10.1038/nmat3990
10 sg:pub.10.1038/nmat4143
11 sg:pub.10.1038/nmat4455
12 sg:pub.10.1038/nmat4456
13 sg:pub.10.1038/nmat4488
14 sg:pub.10.1038/npjquantmats.2016.14
15 sg:pub.10.1038/s41598-017-01967-y
16 sg:pub.10.1038/srep02016
17 https://doi.org/10.1002/adma.201605965
18 https://doi.org/10.1002/jcc.21759
19 https://doi.org/10.1002/zaac.19784380104
20 https://doi.org/10.1016/j.cpc.2007.11.016
21 https://doi.org/10.1016/j.jssc.2007.01.010
22 https://doi.org/10.1016/j.scib.2017.02.009
23 https://doi.org/10.1029/jb091ib05p04673
24 https://doi.org/10.1063/1.1564060
25 https://doi.org/10.1063/1.1668634
26 https://doi.org/10.1063/1.3382344
27 https://doi.org/10.1073/pnas.1014085108
28 https://doi.org/10.1073/pnas.1601262113
29 https://doi.org/10.1073/pnas.30.9.244
30 https://doi.org/10.1088/0953-8984/25/36/362204
31 https://doi.org/10.1103/physrev.147.295
32 https://doi.org/10.1103/physrevb.50.17953
33 https://doi.org/10.1103/physrevb.54.11169
34 https://doi.org/10.1103/physrevb.59.1758
35 https://doi.org/10.1103/physrevb.76.045302
36 https://doi.org/10.1103/physrevb.78.134106
37 https://doi.org/10.1103/physrevb.83.140504
38 https://doi.org/10.1103/physrevb.83.205101
39 https://doi.org/10.1103/physrevb.85.195320
40 https://doi.org/10.1103/physrevb.88.125427
41 https://doi.org/10.1103/physrevb.89.081106
42 https://doi.org/10.1103/physrevb.90.125126
43 https://doi.org/10.1103/physrevb.92.161107
44 https://doi.org/10.1103/physrevb.94.054517
45 https://doi.org/10.1103/physrevb.95.024510
46 https://doi.org/10.1103/physrevb.95.235149
47 https://doi.org/10.1103/physrevlett.104.057001
48 https://doi.org/10.1103/physrevlett.106.127004
49 https://doi.org/10.1103/physrevlett.107.127205
50 https://doi.org/10.1103/physrevlett.107.186806
51 https://doi.org/10.1103/physrevlett.108.140405
52 https://doi.org/10.1103/physrevlett.108.146601
53 https://doi.org/10.1103/physrevlett.111.087001
54 https://doi.org/10.1103/physrevlett.113.027603
55 https://doi.org/10.1103/physrevlett.113.246402
56 https://doi.org/10.1103/physrevlett.116.066801
57 https://doi.org/10.1103/physrevlett.77.3865
58 https://doi.org/10.1103/physrevlett.98.106803
59 https://doi.org/10.1103/physrevx.5.011029
60 https://doi.org/10.1103/revmodphys.82.3045
61 https://doi.org/10.1103/revmodphys.83.1057
62 https://doi.org/10.1126/science.1245085
63 https://doi.org/10.1126/science.1256742
64 schema:datePublished 2018-12
65 schema:datePublishedReg 2018-12-01
66 schema:description Superconductivity and topological quantum states are two frontier fields of research in modern condensed matter physics. The realization of superconductivity in topological materials is highly desired; however, superconductivity in such materials is typically limited to two-dimensional or three-dimensional materials and is far from being thoroughly investigated. In this work, we boost the electronic properties of the quasi-one-dimensional topological insulator bismuth iodide β-Bi4I4 by applying high pressure. Superconductivity is observed in β-Bi4I4 for pressures, where the temperature dependence of the resistivity changes from a semiconducting-like behavior to that of a normal metal. The superconducting transition temperature Tc increases with applied pressure and reaches a maximum value of 6 K at 23 GPa, followed by a slow decrease. Our theoretical calculations suggest the presence of multiple pressure-induced topological quantum phase transitions as well as a structural–electronic instability. Pressure-induced superconductivity is observed in topological insulator β-Bi4I4, and multiple topological phase transitions are predicted from ab initio calculations. An international team led by Binghai Yan and Claudia Felser from Max Planck Institute for Chemical Physics of Solids in Germany investigated the high-pressure behavior of the quasi-one-dimensional topological insulator β-Bi4I4. The resistivity under pressure shows a semiconductor-to-metal transition, followed by zero resistivity above 17.6 GPa, indicating the emergence of superconductivity. The critical transition temperature reaches a maximum of 6 K at 23 GPa. Ab initio calculations suggest multiple topological phase transitions, which show corresponding anomalies in the pressure-dependent resistivity data. These results are helpful in making β-Bi4I4 a promising candidate of possible topological superconductivity, which is a first step to quantum computation.
67 schema:genre research_article
68 schema:inLanguage en
69 schema:isAccessibleForFree true
70 schema:isPartOf N4a3928c98d02443b98eb457a8a76a2e4
71 Nc75e45dc1b0742d8b363d67b9d9328ed
72 sg:journal.1290460
73 schema:name Pressure-induced superconductivity and topological quantum phase transitions in a quasi-one-dimensional topological insulator: Bi4I4
74 schema:pagination 4
75 schema:productId N0cfd0089712941219d319d0cedd19c6e
76 Na222a32a7e6745abade6657bd4e8118f
77 Nf030abd384044bb783bca8b3d216b211
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100570915
79 https://doi.org/10.1038/s41535-018-0078-3
80 schema:sdDatePublished 2019-04-10T14:56
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Nfc7e976c7f1d4b57b26f9c39271be8bd
83 schema:url https://www.nature.com/articles/s41535-018-0078-3
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N02ff1d6cf6c042f296965b0cd1a8f4c6 rdf:first sg:person.014272747332.91
88 rdf:rest N2c706820026f4f4991884ec14275c771
89 N0cfd0089712941219d319d0cedd19c6e schema:name doi
90 schema:value 10.1038/s41535-018-0078-3
91 rdf:type schema:PropertyValue
92 N13dbd95213894e3b9e743e2557fb8f94 rdf:first sg:person.0703230070.47
93 rdf:rest N7adfc1b7156f49078c5f3c5a9da7d6f4
94 N2c706820026f4f4991884ec14275c771 rdf:first N6c577e57a8194e9fabbed805e36b5352
95 rdf:rest Necff568ab4084e9fbc94ee18e0f4a1e6
96 N33c7e747df2143f3a6812d31c23ab11d rdf:first sg:person.014635230117.44
97 rdf:rest N13dbd95213894e3b9e743e2557fb8f94
98 N3f1914653fe5415389fc6acad1431ee3 rdf:first sg:person.01107515006.47
99 rdf:rest N02ff1d6cf6c042f296965b0cd1a8f4c6
100 N4a3928c98d02443b98eb457a8a76a2e4 schema:issueNumber 1
101 rdf:type schema:PublicationIssue
102 N6c577e57a8194e9fabbed805e36b5352 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
103 schema:familyName Medvedev
104 schema:givenName Sergiy A.
105 rdf:type schema:Person
106 N715e442e3332409aa351e810337e19fb rdf:first sg:person.0644442410.21
107 rdf:rest N33c7e747df2143f3a6812d31c23ab11d
108 N7aa7e695a62f4d70a2da06b98ec0592e rdf:first sg:person.013146334221.31
109 rdf:rest N3f1914653fe5415389fc6acad1431ee3
110 N7adfc1b7156f49078c5f3c5a9da7d6f4 rdf:first sg:person.0647744654.89
111 rdf:rest Ndf3cae99807f478c82eed0ee0987bdf4
112 Na222a32a7e6745abade6657bd4e8118f schema:name readcube_id
113 schema:value a00e23f8a80ea668039105f5a56527166b53fb52949d4eb07003d25c613622e7
114 rdf:type schema:PropertyValue
115 Nc75e45dc1b0742d8b363d67b9d9328ed schema:volumeNumber 3
116 rdf:type schema:PublicationVolume
117 Ndf3cae99807f478c82eed0ee0987bdf4 rdf:first sg:person.0776172552.40
118 rdf:rest N7aa7e695a62f4d70a2da06b98ec0592e
119 Ne917f4e46feb4e0789cbe425e7fa743d rdf:first sg:person.0710676154.01
120 rdf:rest rdf:nil
121 Necff568ab4084e9fbc94ee18e0f4a1e6 rdf:first sg:person.01051315016.69
122 rdf:rest Ne917f4e46feb4e0789cbe425e7fa743d
123 Nf030abd384044bb783bca8b3d216b211 schema:name dimensions_id
124 schema:value pub.1100570915
125 rdf:type schema:PropertyValue
126 Nfc7e976c7f1d4b57b26f9c39271be8bd schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
129 schema:name Engineering
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
132 schema:name Materials Engineering
133 rdf:type schema:DefinedTerm
134 sg:grant.3789637 http://pending.schema.org/fundedItem sg:pub.10.1038/s41535-018-0078-3
135 rdf:type schema:MonetaryGrant
136 sg:journal.1290460 schema:issn 2397-4648
137 schema:name npj Quantum Materials
138 rdf:type schema:Periodical
139 sg:person.01051315016.69 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
140 schema:familyName Yan
141 schema:givenName Binghai
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051315016.69
143 rdf:type schema:Person
144 sg:person.01107515006.47 schema:affiliation https://www.grid.ac/institutes/grid.450270.4
145 schema:familyName Rana
146 schema:givenName Kumari Gaurav
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107515006.47
148 rdf:type schema:Person
149 sg:person.013146334221.31 schema:affiliation https://www.grid.ac/institutes/grid.144022.1
150 schema:familyName Wang
151 schema:givenName Lei
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013146334221.31
153 rdf:type schema:Person
154 sg:person.014272747332.91 schema:affiliation https://www.grid.ac/institutes/grid.450270.4
155 schema:familyName Parkin
156 schema:givenName Stuart
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014272747332.91
158 rdf:type schema:Person
159 sg:person.014635230117.44 schema:affiliation https://www.grid.ac/institutes/grid.440637.2
160 schema:familyName Shi
161 schema:givenName Wujun
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014635230117.44
163 rdf:type schema:Person
164 sg:person.0644442410.21 schema:affiliation https://www.grid.ac/institutes/grid.440637.2
165 schema:familyName Qi
166 schema:givenName Yanpeng
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644442410.21
168 rdf:type schema:Person
169 sg:person.0647744654.89 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
170 schema:familyName Naumov
171 schema:givenName Pavel G.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647744654.89
173 rdf:type schema:Person
174 sg:person.0703230070.47 schema:affiliation https://www.grid.ac/institutes/grid.450270.4
175 schema:familyName Werner
176 schema:givenName Peter
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703230070.47
178 rdf:type schema:Person
179 sg:person.0710676154.01 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
180 schema:familyName Felser
181 schema:givenName Claudia
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710676154.01
183 rdf:type schema:Person
184 sg:person.0776172552.40 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
185 schema:familyName Schnelle
186 schema:givenName Walter
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776172552.40
188 rdf:type schema:Person
189 sg:pub.10.1038/nature15768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028100728
190 https://doi.org/10.1038/nature15768
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/ncomms11038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033331309
193 https://doi.org/10.1038/ncomms11038
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/ncomms8373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032808151
196 https://doi.org/10.1038/ncomms8373
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/ncomms8804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020075859
199 https://doi.org/10.1038/ncomms8804
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/ncomms8805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007145887
202 https://doi.org/10.1038/ncomms8805
203 rdf:type schema:CreativeWork
204 sg:pub.10.1038/nmat3990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002373186
205 https://doi.org/10.1038/nmat3990
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/nmat4143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050812169
208 https://doi.org/10.1038/nmat4143
209 rdf:type schema:CreativeWork
210 sg:pub.10.1038/nmat4455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001727260
211 https://doi.org/10.1038/nmat4455
212 rdf:type schema:CreativeWork
213 sg:pub.10.1038/nmat4456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046375511
214 https://doi.org/10.1038/nmat4456
215 rdf:type schema:CreativeWork
216 sg:pub.10.1038/nmat4488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014339415
217 https://doi.org/10.1038/nmat4488
218 rdf:type schema:CreativeWork
219 sg:pub.10.1038/npjquantmats.2016.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002127999
220 https://doi.org/10.1038/npjquantmats.2016.14
221 rdf:type schema:CreativeWork
222 sg:pub.10.1038/s41598-017-01967-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1085224597
223 https://doi.org/10.1038/s41598-017-01967-y
224 rdf:type schema:CreativeWork
225 sg:pub.10.1038/srep02016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000821018
226 https://doi.org/10.1038/srep02016
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1002/adma.201605965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084007253
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1002/jcc.21759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036741104
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1002/zaac.19784380104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045078635
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.cpc.2007.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041208656
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.jssc.2007.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053403539
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.scib.2017.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083899969
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1029/jb091ib05p04673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028480620
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1063/1.1564060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057720612
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1063/1.1668634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057745445
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1063/1.3382344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002352738
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1073/pnas.1014085108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004904925
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1073/pnas.1601262113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026375010
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1073/pnas.30.9.244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040695694
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1088/0953-8984/25/36/362204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048059565
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1103/physrev.147.295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060433136
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1103/physrevb.50.17953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573414
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1103/physrevb.54.11169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060581262
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1103/physrevb.59.1758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060591374
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1103/physrevb.76.045302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031979890
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1103/physrevb.78.134106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060626228
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1103/physrevb.83.140504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017453503
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1103/physrevb.83.205101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025277884
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1103/physrevb.85.195320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023105171
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1103/physrevb.88.125427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050056339
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1103/physrevb.89.081106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001731127
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1103/physrevb.90.125126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060644619
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1103/physrevb.92.161107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060647527
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1103/physrevb.94.054517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060651512
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1103/physrevb.95.024510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084603947
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1103/physrevb.95.235149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087291356
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1103/physrevlett.104.057001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001751749
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1103/physrevlett.106.127004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041616611
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1103/physrevlett.107.127205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006809835
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1103/physrevlett.107.186806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020322294
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1103/physrevlett.108.140405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008952392
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1103/physrevlett.108.146601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019417419
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1103/physrevlett.111.087001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060761962
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1103/physrevlett.113.027603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016127489
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1103/physrevlett.113.246402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015660837
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1103/physrevlett.116.066801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764990
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1103/physrevlett.98.106803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003001378
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1103/physrevx.5.011029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034242879
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1103/revmodphys.82.3045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004083979
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1103/revmodphys.83.1057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045115933
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1126/science.1245085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062469056
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1126/science.1256742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062470143
321 rdf:type schema:CreativeWork
322 https://www.grid.ac/institutes/grid.144022.1 schema:alternateName North West Agriculture and Forestry University
323 schema:name Department of Power and Electrical Engineering, Northwest A&F University, 712100, Yangling, China
324 Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
325 rdf:type schema:Organization
326 https://www.grid.ac/institutes/grid.419507.e schema:alternateName Max Planck Institute for Chemical Physics of Solids
327 schema:name Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
328 Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 119333, Moscow, Russia
329 rdf:type schema:Organization
330 https://www.grid.ac/institutes/grid.419560.f schema:alternateName Max Planck Institute for the Physics of Complex Systems
331 schema:name Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
332 Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany
333 School of Physical Science and Technology, ShanghaiTech University, 200031, Shanghai, China
334 rdf:type schema:Organization
335 https://www.grid.ac/institutes/grid.440637.2 schema:alternateName ShanghaiTech University
336 schema:name Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
337 School of Physical Science and Technology, ShanghaiTech University, 200031, Shanghai, China
338 rdf:type schema:Organization
339 https://www.grid.ac/institutes/grid.450270.4 schema:alternateName Max Planck Institute of Microstructure Physics
340 schema:name Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
341 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...