Realizing and manipulating space-time inversion symmetric topological semimetal bands with superconducting quantum circuits View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Xinsheng Tan, Yuxin Zhao, Qiang Liu, Guangming Xue, Haifeng Yu, Z. D. Wang, Yang Yu

ABSTRACT

Symmetries of space-inversion (P), time-reversal (T), as well as the joint space–time inversion (PT) are fundamental and significantly important in physics. Here we have experimentally realized the joint PT invariant Z2-type topological semimetal-bands, via an analogy between the momentum space and a controllable parameter space in superconducting quantum circuits. By measuring the whole energy spectrum of the system, we clearly imaged an exotic tunable gapless band structure typical of topological semimetals. Two topological quantum phase transitions, from a topological semimetal to two kinds of insulators, can be manipulated by continuously tuning the different parameters in the experimental setup, one of which captures the Z2 topology of the PT semimetal via merging a pair of nontrivial Z2 Dirac points. Remarkably, the topological robustness was demonstrated unambiguously, by adding a perturbation that breaks only the individual T and P symmetries but keeps the joint PT symmetry. In contrast, when another kind of PT-violating perturbation is introduced, a topologically trivial insulator gap is fully opened. A special topological semimetal phase is realized in superconducting quantum circuits via mimicking the momentum space with a controllable parameter space. A team led by Haifeng Yu and Yang Yu from Nanjing University and Z. D. Wang from The University of Hong Kong measured the whole energy spectrum of a square lattice made by superconducting quantum circuits. They imaged a tunable gapless band structure typical of topological semimetals. By tuning parameters, they induced a special quantum phase transition from a space-time semimetal, which is a special topological semimetal via merging a pair of Dirac points, to an insulator. They further proved the robustness of such space-time semimetal phase by breaking individual time reversal or inversion symmetry while keeping space–time symmetry intact. These results represent the first experimental realization of space–time inversion symmetric topological semimetal phase. More... »

PAGES

60

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41535-017-0062-3

DOI

http://dx.doi.org/10.1038/s41535-017-0062-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092421741


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanjing University", 
          "id": "https://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, 210093, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tan", 
        "givenName": "Xinsheng", 
        "id": "sg:person.015150525763.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015150525763.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Solid State Research", 
          "id": "https://www.grid.ac/institutes/grid.419552.e", 
          "name": [
            "Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China", 
            "Max-Planck-Institute for Solid State Research, D-70569, Stuttgart, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Yuxin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University", 
          "id": "https://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, 210093, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Qiang", 
        "id": "sg:person.015676431704.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015676431704.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University", 
          "id": "https://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, 210093, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Guangming", 
        "id": "sg:person.0663017161.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663017161.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Science and Technology of China", 
          "id": "https://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, 210093, Nanjing, China", 
            "Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Haifeng", 
        "id": "sg:person.01031001630.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031001630.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Z. D.", 
        "id": "sg:person.011374710011.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011374710011.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Science and Technology of China", 
          "id": "https://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, 210093, Nanjing, China", 
            "Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Yang", 
        "id": "sg:person.0605650326.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605650326.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature13891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001395947", 
          "https://doi.org/10.1038/nature13891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.133601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002081560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.133601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002081560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002136634", 
          "https://doi.org/10.1038/nature02851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002136634", 
          "https://doi.org/10.1038/nature02851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.3045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004083979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.3045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004083979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.062320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010131608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.062320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010131608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010985600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010985600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.042319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015118427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.042319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015118427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016787662", 
          "https://doi.org/10.1038/nature10122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.86.153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018947881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.86.153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018947881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.050402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019932164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.050402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019932164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/74/10/104401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019976609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.064509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020737977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.064509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020737977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021007724", 
          "https://doi.org/10.1038/nature12802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.205101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025277884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.205101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025277884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026792474", 
          "https://doi.org/10.1038/19718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026792474", 
          "https://doi.org/10.1038/19718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031158789", 
          "https://doi.org/10.1038/ncomms6836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.140515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033005017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.140515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033005017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1116693109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035979525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.173601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039169943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.173601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039169943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaa9297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044122552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.1057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045115933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.1057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045115933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.027001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046539151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.027001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046539151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.240404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048700261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.240404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048700261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1231930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049747540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.031013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051462898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.031013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051462898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/qmath/17.1.367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059987304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.016401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.016401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.156402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.156402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1069372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1069452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1177838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062460456"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Symmetries of space-inversion (P), time-reversal (T), as well as the joint space\u2013time inversion (PT) are fundamental and significantly important in physics. Here we have experimentally realized the joint PT invariant Z2-type topological semimetal-bands, via an analogy between the momentum space and a controllable parameter space in superconducting quantum circuits. By measuring the whole energy spectrum of the system, we clearly imaged an exotic tunable gapless band structure typical of topological semimetals. Two topological quantum phase transitions, from a topological semimetal to two kinds of insulators, can be manipulated by continuously tuning the different parameters in the experimental setup, one of which captures the Z2 topology of the PT semimetal via merging a pair of nontrivial Z2 Dirac points. Remarkably, the topological robustness was demonstrated unambiguously, by adding a perturbation that breaks only the individual T and P symmetries but keeps the joint PT symmetry. In contrast, when another kind of PT-violating perturbation is introduced, a topologically trivial insulator gap is fully opened. A special topological semimetal phase is realized in superconducting quantum circuits via mimicking the momentum space with a controllable parameter space. A team led by Haifeng Yu and Yang Yu from Nanjing University and Z. D. Wang from The University of Hong Kong measured the whole energy spectrum of a square lattice made by superconducting quantum circuits. They imaged a tunable gapless band structure typical of topological semimetals. By tuning parameters, they induced a special quantum phase transition from a space-time semimetal, which is a special topological semimetal via merging a pair of Dirac points, to an insulator. They further proved the robustness of such space-time semimetal phase by breaking individual time reversal or inversion symmetry while keeping space\u2013time symmetry intact. These results represent the first experimental realization of space\u2013time inversion symmetric topological semimetal phase.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41535-017-0062-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7206133", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7204365", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1290460", 
        "issn": [
          "2397-4648"
        ], 
        "name": "npj Quantum Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Realizing and manipulating space-time inversion symmetric topological semimetal bands with superconducting quantum circuits", 
    "pagination": "60", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8eb5cf77b179cd44956371873e4635568ca61f0f58e32849c2bd6c5d32e668f3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41535-017-0062-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092421741"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41535-017-0062-3", 
      "https://app.dimensions.ai/details/publication/pub.1092421741"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000573.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41535-017-0062-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41535-017-0062-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41535-017-0062-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41535-017-0062-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41535-017-0062-3'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41535-017-0062-3 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Necfcc5b4e2764a9393b985fb1ed1bdb9
4 schema:citation sg:pub.10.1038/19718
5 sg:pub.10.1038/nature02851
6 sg:pub.10.1038/nature10122
7 sg:pub.10.1038/nature12802
8 sg:pub.10.1038/nature13891
9 sg:pub.10.1038/ncomms6836
10 https://doi.org/10.1073/pnas.1116693109
11 https://doi.org/10.1088/0034-4885/74/10/104401
12 https://doi.org/10.1093/qmath/17.1.367
13 https://doi.org/10.1103/physreva.69.062320
14 https://doi.org/10.1103/physreva.76.042319
15 https://doi.org/10.1103/physrevb.68.064509
16 https://doi.org/10.1103/physrevb.75.140515
17 https://doi.org/10.1103/physrevb.83.205101
18 https://doi.org/10.1103/physrevlett.105.173601
19 https://doi.org/10.1103/physrevlett.110.240404
20 https://doi.org/10.1103/physrevlett.112.027001
21 https://doi.org/10.1103/physrevlett.113.050402
22 https://doi.org/10.1103/physrevlett.115.133601
23 https://doi.org/10.1103/physrevlett.116.016401
24 https://doi.org/10.1103/physrevlett.116.156402
25 https://doi.org/10.1103/physrevx.5.031013
26 https://doi.org/10.1103/revmodphys.82.3045
27 https://doi.org/10.1103/revmodphys.83.1057
28 https://doi.org/10.1103/revmodphys.85.623
29 https://doi.org/10.1103/revmodphys.86.153
30 https://doi.org/10.1126/science.1069372
31 https://doi.org/10.1126/science.1069452
32 https://doi.org/10.1126/science.1177838
33 https://doi.org/10.1126/science.1231930
34 https://doi.org/10.1126/science.aaa9297
35 schema:datePublished 2017-12
36 schema:datePublishedReg 2017-12-01
37 schema:description Symmetries of space-inversion (P), time-reversal (T), as well as the joint space–time inversion (PT) are fundamental and significantly important in physics. Here we have experimentally realized the joint PT invariant Z2-type topological semimetal-bands, via an analogy between the momentum space and a controllable parameter space in superconducting quantum circuits. By measuring the whole energy spectrum of the system, we clearly imaged an exotic tunable gapless band structure typical of topological semimetals. Two topological quantum phase transitions, from a topological semimetal to two kinds of insulators, can be manipulated by continuously tuning the different parameters in the experimental setup, one of which captures the Z2 topology of the PT semimetal via merging a pair of nontrivial Z2 Dirac points. Remarkably, the topological robustness was demonstrated unambiguously, by adding a perturbation that breaks only the individual T and P symmetries but keeps the joint PT symmetry. In contrast, when another kind of PT-violating perturbation is introduced, a topologically trivial insulator gap is fully opened. A special topological semimetal phase is realized in superconducting quantum circuits via mimicking the momentum space with a controllable parameter space. A team led by Haifeng Yu and Yang Yu from Nanjing University and Z. D. Wang from The University of Hong Kong measured the whole energy spectrum of a square lattice made by superconducting quantum circuits. They imaged a tunable gapless band structure typical of topological semimetals. By tuning parameters, they induced a special quantum phase transition from a space-time semimetal, which is a special topological semimetal via merging a pair of Dirac points, to an insulator. They further proved the robustness of such space-time semimetal phase by breaking individual time reversal or inversion symmetry while keeping space–time symmetry intact. These results represent the first experimental realization of space–time inversion symmetric topological semimetal phase.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N2a09a1a0856c490c83965fd96ca0c31d
42 N3a03dcd6ec704ef3ad402de7893368e7
43 sg:journal.1290460
44 schema:name Realizing and manipulating space-time inversion symmetric topological semimetal bands with superconducting quantum circuits
45 schema:pagination 60
46 schema:productId N2a623cf9dee749f1b0ac7934127318f6
47 N3cbeeb3a548f4578b7b096b8e8785947
48 Nfb7b8bfa5088432cbeb57e96da6e5957
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092421741
50 https://doi.org/10.1038/s41535-017-0062-3
51 schema:sdDatePublished 2019-04-10T20:07
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nab0fcdb01e444f8c92faaa03cbfd1281
54 schema:url https://www.nature.com/articles/s41535-017-0062-3
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N2a09a1a0856c490c83965fd96ca0c31d schema:issueNumber 1
59 rdf:type schema:PublicationIssue
60 N2a623cf9dee749f1b0ac7934127318f6 schema:name doi
61 schema:value 10.1038/s41535-017-0062-3
62 rdf:type schema:PropertyValue
63 N3a03dcd6ec704ef3ad402de7893368e7 schema:volumeNumber 2
64 rdf:type schema:PublicationVolume
65 N3cbeeb3a548f4578b7b096b8e8785947 schema:name dimensions_id
66 schema:value pub.1092421741
67 rdf:type schema:PropertyValue
68 N3d2e5f9b92e74fa5a1dd45333765cece rdf:first sg:person.01031001630.64
69 rdf:rest Nb91109da992948b2ace868291f6d5aff
70 N41abecfee7394437b0faaeb81e819682 rdf:first N95f8fbe78eb1419185324a6542a07db1
71 rdf:rest Neaf3906946de46afbed3e0d2dfbed286
72 N4a8c297af08e41c29feffaae72fd18a3 rdf:first sg:person.0663017161.51
73 rdf:rest N3d2e5f9b92e74fa5a1dd45333765cece
74 N8bad94cefd7342b2944e0d6a16aad04c rdf:first sg:person.0605650326.09
75 rdf:rest rdf:nil
76 N95f8fbe78eb1419185324a6542a07db1 schema:affiliation https://www.grid.ac/institutes/grid.419552.e
77 schema:familyName Zhao
78 schema:givenName Yuxin
79 rdf:type schema:Person
80 Nab0fcdb01e444f8c92faaa03cbfd1281 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Nb91109da992948b2ace868291f6d5aff rdf:first sg:person.011374710011.80
83 rdf:rest N8bad94cefd7342b2944e0d6a16aad04c
84 Neaf3906946de46afbed3e0d2dfbed286 rdf:first sg:person.015676431704.63
85 rdf:rest N4a8c297af08e41c29feffaae72fd18a3
86 Necfcc5b4e2764a9393b985fb1ed1bdb9 rdf:first sg:person.015150525763.35
87 rdf:rest N41abecfee7394437b0faaeb81e819682
88 Nfb7b8bfa5088432cbeb57e96da6e5957 schema:name readcube_id
89 schema:value 8eb5cf77b179cd44956371873e4635568ca61f0f58e32849c2bd6c5d32e668f3
90 rdf:type schema:PropertyValue
91 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
92 schema:name Physical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
95 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
96 rdf:type schema:DefinedTerm
97 sg:grant.7204365 http://pending.schema.org/fundedItem sg:pub.10.1038/s41535-017-0062-3
98 rdf:type schema:MonetaryGrant
99 sg:grant.7206133 http://pending.schema.org/fundedItem sg:pub.10.1038/s41535-017-0062-3
100 rdf:type schema:MonetaryGrant
101 sg:journal.1290460 schema:issn 2397-4648
102 schema:name npj Quantum Materials
103 rdf:type schema:Periodical
104 sg:person.01031001630.64 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
105 schema:familyName Yu
106 schema:givenName Haifeng
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031001630.64
108 rdf:type schema:Person
109 sg:person.011374710011.80 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
110 schema:familyName Wang
111 schema:givenName Z. D.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011374710011.80
113 rdf:type schema:Person
114 sg:person.015150525763.35 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
115 schema:familyName Tan
116 schema:givenName Xinsheng
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015150525763.35
118 rdf:type schema:Person
119 sg:person.015676431704.63 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
120 schema:familyName Liu
121 schema:givenName Qiang
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015676431704.63
123 rdf:type schema:Person
124 sg:person.0605650326.09 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
125 schema:familyName Yu
126 schema:givenName Yang
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605650326.09
128 rdf:type schema:Person
129 sg:person.0663017161.51 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
130 schema:familyName Xue
131 schema:givenName Guangming
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663017161.51
133 rdf:type schema:Person
134 sg:pub.10.1038/19718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026792474
135 https://doi.org/10.1038/19718
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nature02851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002136634
138 https://doi.org/10.1038/nature02851
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nature10122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016787662
141 https://doi.org/10.1038/nature10122
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nature12802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021007724
144 https://doi.org/10.1038/nature12802
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nature13891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001395947
147 https://doi.org/10.1038/nature13891
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/ncomms6836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031158789
150 https://doi.org/10.1038/ncomms6836
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1073/pnas.1116693109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035979525
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1088/0034-4885/74/10/104401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019976609
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1093/qmath/17.1.367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059987304
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physreva.69.062320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010131608
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physreva.76.042319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015118427
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevb.68.064509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020737977
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevb.75.140515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033005017
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevb.83.205101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025277884
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevlett.105.173601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039169943
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevlett.110.240404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048700261
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevlett.112.027001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046539151
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevlett.113.050402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019932164
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevlett.115.133601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002081560
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevlett.116.016401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764774
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevlett.116.156402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060765387
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevx.5.031013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051462898
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/revmodphys.82.3045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004083979
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/revmodphys.83.1057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045115933
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/revmodphys.85.623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010985600
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/revmodphys.86.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018947881
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1126/science.1069372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445901
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1126/science.1069452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445912
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1126/science.1177838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062460456
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1126/science.1231930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049747540
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1126/science.aaa9297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044122552
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.194645.b schema:alternateName University of Hong Kong
203 schema:name Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
204 rdf:type schema:Organization
205 https://www.grid.ac/institutes/grid.41156.37 schema:alternateName Nanjing University
206 schema:name National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, 210093, Nanjing, China
207 rdf:type schema:Organization
208 https://www.grid.ac/institutes/grid.419552.e schema:alternateName Max Planck Institute for Solid State Research
209 schema:name Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
210 Max-Planck-Institute for Solid State Research, D-70569, Stuttgart, Germany
211 rdf:type schema:Organization
212 https://www.grid.ac/institutes/grid.59053.3a schema:alternateName University of Science and Technology of China
213 schema:name National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, 210093, Nanjing, China
214 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...