Possible Weyl fermions in the magnetic Kondo system CeSb View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-07-13

AUTHORS

Chunyu Guo, Chao Cao, Michael Smidman, Fan Wu, Yongjun Zhang, Frank Steglich, Fu-Chun Zhang, Huiqiu Yuan

ABSTRACT

Materials where the electronic bands have unusual topologies allow for the realisation of novel physics and have a wide range of potential applications. When two electronic bands with linear dispersions intersect at a point, the excitations could be described as Weyl fermions, which are massless particles with a particular chirality. Here we report evidence for the presence of Weyl fermions in the ferromagnetic state of the low-carrier density, strongly correlated Kondo lattice system CeSb, from electronic structure calculations and angle-dependent magnetoresistance measurements. When the applied magnetic field is parallel to the electric current, a pronounced negative magnetoresistance is observed within the ferromagnetic state, which is destroyed upon slightly rotating the field away. These results give evidence for CeSb belonging to a new class of Kondo lattice materials with Weyl fermions in the ferromagnetic state. More... »

PAGES

39

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41535-017-0038-3

DOI

http://dx.doi.org/10.1038/s41535-017-0038-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090448724


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Correlated Matter and Department of Physics, Zhejiang University, 310058, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Center for Correlated Matter and Department of Physics, Zhejiang University, 310058, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Chunyu", 
        "id": "sg:person.0623364344.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623364344.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Hangzhou Normal University, 310036, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.410595.c", 
          "name": [
            "Department of Physics, Hangzhou Normal University, 310036, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Chao", 
        "id": "sg:person.011130272571.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011130272571.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Correlated Matter and Department of Physics, Zhejiang University, 310058, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Center for Correlated Matter and Department of Physics, Zhejiang University, 310058, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smidman", 
        "givenName": "Michael", 
        "id": "sg:person.01027247163.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027247163.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Correlated Matter and Department of Physics, Zhejiang University, 310058, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Center for Correlated Matter and Department of Physics, Zhejiang University, 310058, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Fan", 
        "id": "sg:person.015163232751.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015163232751.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Correlated Matter and Department of Physics, Zhejiang University, 310058, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Center for Correlated Matter and Department of Physics, Zhejiang University, 310058, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yongjun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Center for Correlated Matter and Department of Physics, Zhejiang University, 310058, Hangzhou, China", 
            "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steglich", 
        "givenName": "Frank", 
        "id": "sg:person.01061214726.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061214726.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Advanced Microstructures, 210093, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.509497.6", 
          "name": [
            "Center for Correlated Matter and Department of Physics, Zhejiang University, 310058, Hangzhou, China", 
            "Collaborative Innovation Center of Advanced Microstructures, 210093, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Fu-Chun", 
        "id": "sg:person.013236364434.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013236364434.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Advanced Microstructures, 210093, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.509497.6", 
          "name": [
            "Center for Correlated Matter and Department of Physics, Zhejiang University, 310058, Hangzhou, China", 
            "Collaborative Innovation Center of Advanced Microstructures, 210093, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuan", 
        "givenName": "Huiqiu", 
        "id": "sg:person.01051321423.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051321423.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphys3648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013203998", 
          "https://doi.org/10.1038/nphys3648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016952109", 
          "https://doi.org/10.1038/nmat4684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032808151", 
          "https://doi.org/10.1038/ncomms8373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023946435", 
          "https://doi.org/10.1038/nphys3581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050812169", 
          "https://doi.org/10.1038/nmat4143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep03150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025314876", 
          "https://doi.org/10.1038/srep03150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep17937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004509928", 
          "https://doi.org/10.1038/srep17937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms10137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031486841", 
          "https://doi.org/10.1038/ncomms10137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms13142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049294342", 
          "https://doi.org/10.1038/ncomms13142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms10301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041075027", 
          "https://doi.org/10.1038/ncomms10301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008713451", 
          "https://doi.org/10.1038/nmat3913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature15768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028100728", 
          "https://doi.org/10.1038/nature15768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020033716", 
          "https://doi.org/10.1038/nphys3425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014314134", 
          "https://doi.org/10.1038/nphys3372"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07-13", 
    "datePublishedReg": "2017-07-13", 
    "description": "Materials where the electronic bands have unusual topologies allow for the realisation of novel physics and have a wide range of potential applications. When two electronic bands with linear dispersions intersect at a point, the excitations could be described as Weyl fermions, which are massless particles with a particular chirality. Here we report evidence for the presence of Weyl fermions in the ferromagnetic state of the low-carrier density, strongly correlated Kondo lattice system CeSb, from electronic structure calculations and angle-dependent magnetoresistance measurements. When the applied magnetic field is parallel to the electric current, a pronounced negative magnetoresistance is observed within the ferromagnetic state, which is destroyed upon slightly rotating the field away. These results give evidence for CeSb belonging to a new class of Kondo lattice materials with Weyl fermions in the ferromagnetic state.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41535-017-0038-3", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8381409", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7208330", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8120988", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1290460", 
        "issn": [
          "2397-4648"
        ], 
        "name": "npj Quantum Materials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "Weyl fermions", 
      "ferromagnetic state", 
      "electronic bands", 
      "low carrier density", 
      "pronounced negative magnetoresistance", 
      "Kondo lattice materials", 
      "angle-dependent magnetoresistance measurements", 
      "applied magnetic field", 
      "electronic structure calculations", 
      "novel physics", 
      "linear dispersion", 
      "magnetic field", 
      "structure calculations", 
      "fermions", 
      "massless particles", 
      "magnetoresistance measurements", 
      "negative magnetoresistance", 
      "CeSb", 
      "electric current", 
      "particular chirality", 
      "potential applications", 
      "lattice materials", 
      "band", 
      "physics", 
      "excitation", 
      "field", 
      "unusual topology", 
      "state", 
      "magnetoresistance", 
      "new class", 
      "dispersion", 
      "calculations", 
      "chirality", 
      "particles", 
      "measurements", 
      "current", 
      "density", 
      "wide range", 
      "materials", 
      "topology", 
      "range", 
      "class", 
      "realisation", 
      "applications", 
      "point", 
      "presence", 
      "results", 
      "evidence"
    ], 
    "name": "Possible Weyl fermions in the magnetic Kondo system CeSb", 
    "pagination": "39", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090448724"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41535-017-0038-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41535-017-0038-3", 
      "https://app.dimensions.ai/details/publication/pub.1090448724"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_721.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41535-017-0038-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41535-017-0038-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41535-017-0038-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41535-017-0038-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41535-017-0038-3'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      21 PREDICATES      86 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41535-017-0038-3 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 schema:author Nde021de15f9548d2a192de18fdb1b5de
4 schema:citation sg:pub.10.1038/nature15768
5 sg:pub.10.1038/ncomms10137
6 sg:pub.10.1038/ncomms10301
7 sg:pub.10.1038/ncomms13142
8 sg:pub.10.1038/ncomms8373
9 sg:pub.10.1038/nmat3913
10 sg:pub.10.1038/nmat4143
11 sg:pub.10.1038/nmat4684
12 sg:pub.10.1038/nphys3372
13 sg:pub.10.1038/nphys3425
14 sg:pub.10.1038/nphys3581
15 sg:pub.10.1038/nphys3648
16 sg:pub.10.1038/srep03150
17 sg:pub.10.1038/srep17937
18 schema:datePublished 2017-07-13
19 schema:datePublishedReg 2017-07-13
20 schema:description Materials where the electronic bands have unusual topologies allow for the realisation of novel physics and have a wide range of potential applications. When two electronic bands with linear dispersions intersect at a point, the excitations could be described as Weyl fermions, which are massless particles with a particular chirality. Here we report evidence for the presence of Weyl fermions in the ferromagnetic state of the low-carrier density, strongly correlated Kondo lattice system CeSb, from electronic structure calculations and angle-dependent magnetoresistance measurements. When the applied magnetic field is parallel to the electric current, a pronounced negative magnetoresistance is observed within the ferromagnetic state, which is destroyed upon slightly rotating the field away. These results give evidence for CeSb belonging to a new class of Kondo lattice materials with Weyl fermions in the ferromagnetic state.
21 schema:genre article
22 schema:isAccessibleForFree true
23 schema:isPartOf N76e8d9d44ce746f4b59a14d693b128ee
24 Ne12b80831d444401a25d9f49663cc881
25 sg:journal.1290460
26 schema:keywords CeSb
27 Kondo lattice materials
28 Weyl fermions
29 angle-dependent magnetoresistance measurements
30 applications
31 applied magnetic field
32 band
33 calculations
34 chirality
35 class
36 current
37 density
38 dispersion
39 electric current
40 electronic bands
41 electronic structure calculations
42 evidence
43 excitation
44 fermions
45 ferromagnetic state
46 field
47 lattice materials
48 linear dispersion
49 low carrier density
50 magnetic field
51 magnetoresistance
52 magnetoresistance measurements
53 massless particles
54 materials
55 measurements
56 negative magnetoresistance
57 new class
58 novel physics
59 particles
60 particular chirality
61 physics
62 point
63 potential applications
64 presence
65 pronounced negative magnetoresistance
66 range
67 realisation
68 results
69 state
70 structure calculations
71 topology
72 unusual topology
73 wide range
74 schema:name Possible Weyl fermions in the magnetic Kondo system CeSb
75 schema:pagination 39
76 schema:productId N339b366a52764811b493c7414adb51f0
77 Neb1a2d18b0b244198a1a0b30c992bc6c
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090448724
79 https://doi.org/10.1038/s41535-017-0038-3
80 schema:sdDatePublished 2022-09-02T16:00
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Nee9d4743715f4a9eb213066689932eff
83 schema:url https://doi.org/10.1038/s41535-017-0038-3
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N0c217f3c25824f8daacfcd925e7703fe rdf:first sg:person.01027247163.08
88 rdf:rest N908cbb8dba01454f998691c66b0c56dc
89 N2c042de821634b45959d6cd030185f08 rdf:first sg:person.01061214726.76
90 rdf:rest N3cb4fbd4eb3741e88120f6a01d972af0
91 N339b366a52764811b493c7414adb51f0 schema:name dimensions_id
92 schema:value pub.1090448724
93 rdf:type schema:PropertyValue
94 N3cb4fbd4eb3741e88120f6a01d972af0 rdf:first sg:person.013236364434.29
95 rdf:rest Nbc444181db784ffebe63d62dfafe2e62
96 N76e8d9d44ce746f4b59a14d693b128ee schema:issueNumber 1
97 rdf:type schema:PublicationIssue
98 N7c3f0db5bbc8435a9921b9a872686664 rdf:first Nad32db58c1da432b9564d47b957ba681
99 rdf:rest N2c042de821634b45959d6cd030185f08
100 N908cbb8dba01454f998691c66b0c56dc rdf:first sg:person.015163232751.80
101 rdf:rest N7c3f0db5bbc8435a9921b9a872686664
102 N9b75b7ef86eb4e06bbbe947bc6a20b3d rdf:first sg:person.011130272571.19
103 rdf:rest N0c217f3c25824f8daacfcd925e7703fe
104 Nad32db58c1da432b9564d47b957ba681 schema:affiliation grid-institutes:grid.13402.34
105 schema:familyName Zhang
106 schema:givenName Yongjun
107 rdf:type schema:Person
108 Nbc444181db784ffebe63d62dfafe2e62 rdf:first sg:person.01051321423.30
109 rdf:rest rdf:nil
110 Nde021de15f9548d2a192de18fdb1b5de rdf:first sg:person.0623364344.01
111 rdf:rest N9b75b7ef86eb4e06bbbe947bc6a20b3d
112 Ne12b80831d444401a25d9f49663cc881 schema:volumeNumber 2
113 rdf:type schema:PublicationVolume
114 Neb1a2d18b0b244198a1a0b30c992bc6c schema:name doi
115 schema:value 10.1038/s41535-017-0038-3
116 rdf:type schema:PropertyValue
117 Nee9d4743715f4a9eb213066689932eff schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
120 schema:name Chemical Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
123 schema:name Inorganic Chemistry
124 rdf:type schema:DefinedTerm
125 sg:grant.7208330 http://pending.schema.org/fundedItem sg:pub.10.1038/s41535-017-0038-3
126 rdf:type schema:MonetaryGrant
127 sg:grant.8120988 http://pending.schema.org/fundedItem sg:pub.10.1038/s41535-017-0038-3
128 rdf:type schema:MonetaryGrant
129 sg:grant.8381409 http://pending.schema.org/fundedItem sg:pub.10.1038/s41535-017-0038-3
130 rdf:type schema:MonetaryGrant
131 sg:journal.1290460 schema:issn 2397-4648
132 schema:name npj Quantum Materials
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.01027247163.08 schema:affiliation grid-institutes:grid.13402.34
136 schema:familyName Smidman
137 schema:givenName Michael
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027247163.08
139 rdf:type schema:Person
140 sg:person.01051321423.30 schema:affiliation grid-institutes:grid.509497.6
141 schema:familyName Yuan
142 schema:givenName Huiqiu
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051321423.30
144 rdf:type schema:Person
145 sg:person.01061214726.76 schema:affiliation grid-institutes:grid.419507.e
146 schema:familyName Steglich
147 schema:givenName Frank
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061214726.76
149 rdf:type schema:Person
150 sg:person.011130272571.19 schema:affiliation grid-institutes:grid.410595.c
151 schema:familyName Cao
152 schema:givenName Chao
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011130272571.19
154 rdf:type schema:Person
155 sg:person.013236364434.29 schema:affiliation grid-institutes:grid.509497.6
156 schema:familyName Zhang
157 schema:givenName Fu-Chun
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013236364434.29
159 rdf:type schema:Person
160 sg:person.015163232751.80 schema:affiliation grid-institutes:grid.13402.34
161 schema:familyName Wu
162 schema:givenName Fan
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015163232751.80
164 rdf:type schema:Person
165 sg:person.0623364344.01 schema:affiliation grid-institutes:grid.13402.34
166 schema:familyName Guo
167 schema:givenName Chunyu
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623364344.01
169 rdf:type schema:Person
170 sg:pub.10.1038/nature15768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028100728
171 https://doi.org/10.1038/nature15768
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/ncomms10137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031486841
174 https://doi.org/10.1038/ncomms10137
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/ncomms10301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041075027
177 https://doi.org/10.1038/ncomms10301
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/ncomms13142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049294342
180 https://doi.org/10.1038/ncomms13142
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/ncomms8373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032808151
183 https://doi.org/10.1038/ncomms8373
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nmat3913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008713451
186 https://doi.org/10.1038/nmat3913
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nmat4143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050812169
189 https://doi.org/10.1038/nmat4143
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nmat4684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016952109
192 https://doi.org/10.1038/nmat4684
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nphys3372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014314134
195 https://doi.org/10.1038/nphys3372
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nphys3425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020033716
198 https://doi.org/10.1038/nphys3425
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/nphys3581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023946435
201 https://doi.org/10.1038/nphys3581
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/nphys3648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013203998
204 https://doi.org/10.1038/nphys3648
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/srep03150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025314876
207 https://doi.org/10.1038/srep03150
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/srep17937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004509928
210 https://doi.org/10.1038/srep17937
211 rdf:type schema:CreativeWork
212 grid-institutes:grid.13402.34 schema:alternateName Center for Correlated Matter and Department of Physics, Zhejiang University, 310058, Hangzhou, China
213 schema:name Center for Correlated Matter and Department of Physics, Zhejiang University, 310058, Hangzhou, China
214 rdf:type schema:Organization
215 grid-institutes:grid.410595.c schema:alternateName Department of Physics, Hangzhou Normal University, 310036, Hangzhou, China
216 schema:name Department of Physics, Hangzhou Normal University, 310036, Hangzhou, China
217 rdf:type schema:Organization
218 grid-institutes:grid.419507.e schema:alternateName Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
219 schema:name Center for Correlated Matter and Department of Physics, Zhejiang University, 310058, Hangzhou, China
220 Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
221 rdf:type schema:Organization
222 grid-institutes:grid.509497.6 schema:alternateName Collaborative Innovation Center of Advanced Microstructures, 210093, Nanjing, China
223 schema:name Center for Correlated Matter and Department of Physics, Zhejiang University, 310058, Hangzhou, China
224 Collaborative Innovation Center of Advanced Microstructures, 210093, Nanjing, China
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...