Counteracting dephasing in Molecular Nanomagnets by optimized qudit encodings View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-08-26

AUTHORS

F. Petiziol, A. Chiesa, S. Wimberger, P. Santini, S. Carretta

ABSTRACT

Molecular Nanomagnets may enable the implementation of qudit-based quantum error-correction codes which exploit the many spin levels naturally embedded in a single molecule, a promising step towards scalable quantum processors. To fully realize the potential of this approach, a microscopic understanding of the errors corrupting the quantum information encoded in a molecular qudit is essential, together with the development of tailor-made quantum error correction strategies. We address these central points by first studying dephasing effects on the molecular spin qudit produced by the interaction with surrounding nuclear spins, which are the dominant source of errors at low temperatures. Numerical quantum error correction codes are then constructed, by means of a systematic optimization procedure based on simulations of the coupled system-bath dynamics, that provide a striking enhancement of the coherence time of the molecular computational unit. The sequence of pulses needed for the experimental implementation of the codes is finally proposed. More... »

PAGES

133

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41534-021-00466-3

DOI

http://dx.doi.org/10.1038/s41534-021-00466-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1140664020


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "UdR Parma, INSTM, Parma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.10383.39", 
          "name": [
            "Universit\u00e0 di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Parma, Italy", 
            "UdR Parma, INSTM, Parma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petiziol", 
        "givenName": "F.", 
        "id": "sg:person.011476754503.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011476754503.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UdR Parma, INSTM, Parma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.10383.39", 
          "name": [
            "Universit\u00e0 di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Parma, Italy", 
            "UdR Parma, INSTM, Parma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chiesa", 
        "givenName": "A.", 
        "id": "sg:person.01033420117.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033420117.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, Parma, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Universit\u00e0 di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Parma, Italy", 
            "INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, Parma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wimberger", 
        "givenName": "S.", 
        "id": "sg:person.01230647256.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230647256.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UdR Parma, INSTM, Parma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.10383.39", 
          "name": [
            "Universit\u00e0 di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Parma, Italy", 
            "UdR Parma, INSTM, Parma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Santini", 
        "givenName": "P.", 
        "id": "sg:person.01221632746.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221632746.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UdR Parma, INSTM, Parma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.10383.39", 
          "name": [
            "Universit\u00e0 di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Parma, Italy", 
            "UdR Parma, INSTM, Parma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carretta", 
        "givenName": "S.", 
        "id": "sg:person.0651066246.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651066246.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41534-020-00346-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1134958533", 
          "https://doi.org/10.1038/s41534-020-00346-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms11377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040373065", 
          "https://doi.org/10.1038/ncomms11377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/npjqi.2015.12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038093732", 
          "https://doi.org/10.1038/npjqi.2015.12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028629386", 
          "https://doi.org/10.1038/ncomms6304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature16984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047595349", 
          "https://doi.org/10.1038/nature16984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41567-018-0414-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112059160", 
          "https://doi.org/10.1038/s41567-018-0414-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41535-018-0082-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101130590", 
          "https://doi.org/10.1038/s41535-018-0082-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep07423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024685857", 
          "https://doi.org/10.1038/srep07423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41557-019-0232-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112949420", 
          "https://doi.org/10.1038/s41557-019-0232-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-08-26", 
    "datePublishedReg": "2021-08-26", 
    "description": "Molecular Nanomagnets may enable the implementation of qudit-based quantum error-correction codes which exploit the many spin levels naturally embedded in a single molecule, a promising step towards scalable quantum processors. To fully realize the potential of this approach, a microscopic understanding of the errors corrupting the quantum information encoded in a molecular qudit is essential, together with the development of tailor-made quantum error correction strategies. We address these central points by first studying dephasing effects on the molecular spin qudit produced by the interaction with surrounding nuclear spins, which are the dominant source of errors at low temperatures. Numerical quantum error correction codes are then constructed, by means of a systematic optimization procedure based on simulations of the coupled system-bath dynamics, that provide a striking enhancement of the coherence time of the molecular computational unit. The sequence of pulses needed for the experimental implementation of the codes is finally proposed.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41534-021-00466-3", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8587456", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1285192", 
        "issn": [
          "2056-6387"
        ], 
        "name": "npj Quantum Information", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "quantum error correction codes", 
      "molecular nanomagnets", 
      "scalable quantum processor", 
      "system-bath dynamics", 
      "sequence of pulses", 
      "molecular qudit", 
      "quantum information", 
      "quantum processor", 
      "nuclear spins", 
      "coherence time", 
      "spin levels", 
      "microscopic understanding", 
      "error correction codes", 
      "experimental implementation", 
      "single molecules", 
      "qudits", 
      "nanomagnets", 
      "systematic optimization procedure", 
      "striking enhancement", 
      "low temperature", 
      "dominant source", 
      "dephasing", 
      "spin", 
      "pulses", 
      "correction codes", 
      "error correction strategy", 
      "promising step", 
      "code", 
      "dynamics", 
      "temperature", 
      "correction strategy", 
      "enhancement", 
      "simulations", 
      "molecules", 
      "source", 
      "interaction", 
      "potential", 
      "error", 
      "means", 
      "computational units", 
      "effect", 
      "time", 
      "encoding", 
      "optimization procedure", 
      "point", 
      "central point", 
      "step", 
      "processors", 
      "understanding", 
      "information", 
      "approach", 
      "implementation", 
      "units", 
      "levels", 
      "development", 
      "procedure", 
      "sequence", 
      "strategies"
    ], 
    "name": "Counteracting dephasing in Molecular Nanomagnets by optimized qudit encodings", 
    "pagination": "133", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1140664020"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41534-021-00466-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41534-021-00466-3", 
      "https://app.dimensions.ai/details/publication/pub.1140664020"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_906.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41534-021-00466-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41534-021-00466-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41534-021-00466-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41534-021-00466-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41534-021-00466-3'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      91 URIs      74 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41534-021-00466-3 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N24ccbf9c5cf44f50b9e077d068b5b566
4 schema:citation sg:pub.10.1038/nature16984
5 sg:pub.10.1038/ncomms11377
6 sg:pub.10.1038/ncomms6304
7 sg:pub.10.1038/npjqi.2015.12
8 sg:pub.10.1038/s41534-020-00346-2
9 sg:pub.10.1038/s41535-018-0082-7
10 sg:pub.10.1038/s41557-019-0232-y
11 sg:pub.10.1038/s41567-018-0414-3
12 sg:pub.10.1038/srep07423
13 schema:datePublished 2021-08-26
14 schema:datePublishedReg 2021-08-26
15 schema:description Molecular Nanomagnets may enable the implementation of qudit-based quantum error-correction codes which exploit the many spin levels naturally embedded in a single molecule, a promising step towards scalable quantum processors. To fully realize the potential of this approach, a microscopic understanding of the errors corrupting the quantum information encoded in a molecular qudit is essential, together with the development of tailor-made quantum error correction strategies. We address these central points by first studying dephasing effects on the molecular spin qudit produced by the interaction with surrounding nuclear spins, which are the dominant source of errors at low temperatures. Numerical quantum error correction codes are then constructed, by means of a systematic optimization procedure based on simulations of the coupled system-bath dynamics, that provide a striking enhancement of the coherence time of the molecular computational unit. The sequence of pulses needed for the experimental implementation of the codes is finally proposed.
16 schema:genre article
17 schema:isAccessibleForFree true
18 schema:isPartOf N2824032587ea464fb0f63881c5eb820c
19 N638a1f1073364709acf659f112e065fa
20 sg:journal.1285192
21 schema:keywords approach
22 central point
23 code
24 coherence time
25 computational units
26 correction codes
27 correction strategy
28 dephasing
29 development
30 dominant source
31 dynamics
32 effect
33 encoding
34 enhancement
35 error
36 error correction codes
37 error correction strategy
38 experimental implementation
39 implementation
40 information
41 interaction
42 levels
43 low temperature
44 means
45 microscopic understanding
46 molecular nanomagnets
47 molecular qudit
48 molecules
49 nanomagnets
50 nuclear spins
51 optimization procedure
52 point
53 potential
54 procedure
55 processors
56 promising step
57 pulses
58 quantum error correction codes
59 quantum information
60 quantum processor
61 qudits
62 scalable quantum processor
63 sequence
64 sequence of pulses
65 simulations
66 single molecules
67 source
68 spin
69 spin levels
70 step
71 strategies
72 striking enhancement
73 system-bath dynamics
74 systematic optimization procedure
75 temperature
76 time
77 understanding
78 units
79 schema:name Counteracting dephasing in Molecular Nanomagnets by optimized qudit encodings
80 schema:pagination 133
81 schema:productId N07dea0c760ae4fd19e4ec0929d18043f
82 N427c8865700d46409315c793f61b1164
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140664020
84 https://doi.org/10.1038/s41534-021-00466-3
85 schema:sdDatePublished 2022-09-02T16:07
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher Nce693f154392439f9986a89157d91195
88 schema:url https://doi.org/10.1038/s41534-021-00466-3
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N07dea0c760ae4fd19e4ec0929d18043f schema:name dimensions_id
93 schema:value pub.1140664020
94 rdf:type schema:PropertyValue
95 N24ccbf9c5cf44f50b9e077d068b5b566 rdf:first sg:person.011476754503.02
96 rdf:rest Nde2d292475b54f2e8ea0c7943a966046
97 N2824032587ea464fb0f63881c5eb820c schema:volumeNumber 7
98 rdf:type schema:PublicationVolume
99 N2ca8afafaeb14a4088c8ff9f9c18db3c rdf:first sg:person.01230647256.82
100 rdf:rest Ne4799c9aa35540699d8a50ace1fc3e77
101 N427c8865700d46409315c793f61b1164 schema:name doi
102 schema:value 10.1038/s41534-021-00466-3
103 rdf:type schema:PropertyValue
104 N638a1f1073364709acf659f112e065fa schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 N92c0c8ce44594136a64744a76d5d243a rdf:first sg:person.0651066246.66
107 rdf:rest rdf:nil
108 Nce693f154392439f9986a89157d91195 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Nde2d292475b54f2e8ea0c7943a966046 rdf:first sg:person.01033420117.26
111 rdf:rest N2ca8afafaeb14a4088c8ff9f9c18db3c
112 Ne4799c9aa35540699d8a50ace1fc3e77 rdf:first sg:person.01221632746.28
113 rdf:rest N92c0c8ce44594136a64744a76d5d243a
114 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
115 schema:name Physical Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
118 schema:name Quantum Physics
119 rdf:type schema:DefinedTerm
120 sg:grant.8587456 http://pending.schema.org/fundedItem sg:pub.10.1038/s41534-021-00466-3
121 rdf:type schema:MonetaryGrant
122 sg:journal.1285192 schema:issn 2056-6387
123 schema:name npj Quantum Information
124 schema:publisher Springer Nature
125 rdf:type schema:Periodical
126 sg:person.01033420117.26 schema:affiliation grid-institutes:grid.10383.39
127 schema:familyName Chiesa
128 schema:givenName A.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033420117.26
130 rdf:type schema:Person
131 sg:person.011476754503.02 schema:affiliation grid-institutes:grid.10383.39
132 schema:familyName Petiziol
133 schema:givenName F.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011476754503.02
135 rdf:type schema:Person
136 sg:person.01221632746.28 schema:affiliation grid-institutes:grid.10383.39
137 schema:familyName Santini
138 schema:givenName P.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221632746.28
140 rdf:type schema:Person
141 sg:person.01230647256.82 schema:affiliation grid-institutes:None
142 schema:familyName Wimberger
143 schema:givenName S.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230647256.82
145 rdf:type schema:Person
146 sg:person.0651066246.66 schema:affiliation grid-institutes:grid.10383.39
147 schema:familyName Carretta
148 schema:givenName S.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651066246.66
150 rdf:type schema:Person
151 sg:pub.10.1038/nature16984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047595349
152 https://doi.org/10.1038/nature16984
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/ncomms11377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040373065
155 https://doi.org/10.1038/ncomms11377
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/ncomms6304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028629386
158 https://doi.org/10.1038/ncomms6304
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/npjqi.2015.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038093732
161 https://doi.org/10.1038/npjqi.2015.12
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/s41534-020-00346-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134958533
164 https://doi.org/10.1038/s41534-020-00346-2
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/s41535-018-0082-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101130590
167 https://doi.org/10.1038/s41535-018-0082-7
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/s41557-019-0232-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1112949420
170 https://doi.org/10.1038/s41557-019-0232-y
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/s41567-018-0414-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112059160
173 https://doi.org/10.1038/s41567-018-0414-3
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/srep07423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024685857
176 https://doi.org/10.1038/srep07423
177 rdf:type schema:CreativeWork
178 grid-institutes:None schema:alternateName INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, Parma, Italy
179 schema:name INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, Parma, Italy
180 Università di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Parma, Italy
181 rdf:type schema:Organization
182 grid-institutes:grid.10383.39 schema:alternateName UdR Parma, INSTM, Parma, Italy
183 schema:name UdR Parma, INSTM, Parma, Italy
184 Università di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Parma, Italy
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...