Quantum-inspired machine learning on high-energy physics data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-07-15

AUTHORS

Timo Felser, Marco Trenti, Lorenzo Sestini, Alessio Gianelle, Davide Zuliani, Donatella Lucchesi, Simone Montangero

ABSTRACT

Tensor Networks, a numerical tool originally designed for simulating quantum many-body systems, have recently been applied to solve Machine Learning problems. Exploiting a tree tensor network, we apply a quantum-inspired machine learning technique to a very important and challenging big data problem in high-energy physics: the analysis and classification of data produced by the Large Hadron Collider at CERN. In particular, we present how to effectively classify so-called b-jets, jets originating from b-quarks from proton–proton collisions in the LHCb experiment, and how to interpret the classification results. We exploit the Tensor Network approach to select important features and adapt the network geometry based on information acquired in the learning process. Finally, we show how to adapt the tree tensor network to achieve optimal precision or fast response in time without the need of repeating the learning process. These results pave the way to the implementation of high-frequency real-time applications, a key ingredient needed among others for current and future LHCb event classification able to trigger events at the tens of MHz scale. More... »

PAGES

111

References to SciGraph publications

  • 2015-05-27. Deep learning in NATURE
  • 1966-09. Some mathematical notes on three-mode factor analysis in PSYCHOMETRIKA
  • 2008-04-16. The anti-kt jet clustering algorithm in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-01-27. Mastering the game of Go with deep neural networks and tree search in NATURE
  • 2020-08-04. Simulating lattice gauge theories within quantum technologies in THE EUROPEAN PHYSICAL JOURNAL D
  • 2018-10-15. Jet charge and machine learning in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018. Introduction to Tensor Network Methods, Numerical simulations of low-dimensional many-body quantum systems in NONE
  • 2009-10-22. A New Scheme for the Tensor Representation in JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS
  • 2018. Supervised Learning with Quantum Computers in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41534-021-00443-w

    DOI

    http://dx.doi.org/10.1038/s41534-021-00443-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1139694997


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Theoretische Physik, Universit\u00e4t des Saarlandes, Saarbr\u00fccken, Germany", 
              "id": "http://www.grid.ac/institutes/grid.11749.3a", 
              "name": [
                "Tensor Solutions, Institute for Complex Quantum Systems, University of Ulm, Ulm, Germany", 
                "Dipartimento di Fisica e Astronomia G. Galilei, Universit\u00e0 di Padova, Padova, Italy", 
                "INFN, Sezione di Padova, Padova, Italy", 
                "Theoretische Physik, Universit\u00e4t des Saarlandes, Saarbr\u00fccken, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Felser", 
            "givenName": "Timo", 
            "id": "sg:person.012623565221.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012623565221.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Fisica e Astronomia G. Galilei, Universit\u00e0 di Padova, Padova, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5608.b", 
              "name": [
                "Tensor Solutions, Institute for Complex Quantum Systems, University of Ulm, Ulm, Germany", 
                "Dipartimento di Fisica e Astronomia G. Galilei, Universit\u00e0 di Padova, Padova, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Trenti", 
            "givenName": "Marco", 
            "id": "sg:person.012645361711.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012645361711.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "INFN, Sezione di Padova, Padova, Italy", 
              "id": "http://www.grid.ac/institutes/grid.470212.2", 
              "name": [
                "INFN, Sezione di Padova, Padova, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sestini", 
            "givenName": "Lorenzo", 
            "id": "sg:person.012054514205.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012054514205.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "INFN, Sezione di Padova, Padova, Italy", 
              "id": "http://www.grid.ac/institutes/grid.470212.2", 
              "name": [
                "INFN, Sezione di Padova, Padova, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gianelle", 
            "givenName": "Alessio", 
            "id": "sg:person.012755563116.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012755563116.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "INFN, Sezione di Padova, Padova, Italy", 
              "id": "http://www.grid.ac/institutes/grid.470212.2", 
              "name": [
                "Dipartimento di Fisica e Astronomia G. Galilei, Universit\u00e0 di Padova, Padova, Italy", 
                "INFN, Sezione di Padova, Padova, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zuliani", 
            "givenName": "Davide", 
            "id": "sg:person.014306436111.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014306436111.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "INFN, Sezione di Padova, Padova, Italy", 
              "id": "http://www.grid.ac/institutes/grid.470212.2", 
              "name": [
                "Dipartimento di Fisica e Astronomia G. Galilei, Universit\u00e0 di Padova, Padova, Italy", 
                "INFN, Sezione di Padova, Padova, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lucchesi", 
            "givenName": "Donatella", 
            "id": "sg:person.016610712707.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016610712707.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Padua Quantum Technologies Research Center, Universit\u00e0 degli Studi di Padova, Padova, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5608.b", 
              "name": [
                "Dipartimento di Fisica e Astronomia G. Galilei, Universit\u00e0 di Padova, Padova, Italy", 
                "INFN, Sezione di Padova, Padova, Italy", 
                "Padua Quantum Technologies Research Center, Universit\u00e0 degli Studi di Padova, Padova, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Montangero", 
            "givenName": "Simone", 
            "id": "sg:person.0761227611.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761227611.56"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1140/epjd/e2020-100571-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129874280", 
              "https://doi.org/10.1140/epjd/e2020-100571-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16961", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039427823", 
              "https://doi.org/10.1038/nature16961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00041-009-9094-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048162286", 
              "https://doi.org/10.1007/s00041-009-9094-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/04/063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023852876", 
              "https://doi.org/10.1088/1126-6708/2008/04/063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-01409-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110287442", 
              "https://doi.org/10.1007/978-3-030-01409-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2018)093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107641016", 
              "https://doi.org/10.1007/jhep10(2018)093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02289464", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002217813", 
              "https://doi.org/10.1007/bf02289464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-96424-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109611129", 
              "https://doi.org/10.1007/978-3-319-96424-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010020120", 
              "https://doi.org/10.1038/nature14539"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-07-15", 
        "datePublishedReg": "2021-07-15", 
        "description": "Tensor Networks, a numerical tool originally designed for simulating quantum many-body systems, have recently been applied to solve Machine Learning problems. Exploiting a tree tensor network, we apply a quantum-inspired machine learning technique to a very important and challenging big data problem in high-energy physics: the analysis and classification of data produced by the Large Hadron Collider at CERN. In particular, we present how to effectively classify so-called b-jets, jets originating from b-quarks from proton\u2013proton collisions in the LHCb experiment, and how to interpret the classification results. We exploit the Tensor Network approach to select important features and adapt the network geometry based on information acquired in the learning process. Finally, we show how to adapt the tree tensor network to achieve optimal precision or fast response in time without the need of repeating the learning process. These results pave the way to the implementation of high-frequency real-time applications, a key ingredient needed among others for current and future LHCb event classification able to trigger events at the tens of MHz scale.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41534-021-00443-w", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7820181", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1285192", 
            "issn": [
              "2056-6387"
            ], 
            "name": "npj Quantum Information", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "tree tensor network", 
          "tensor networks", 
          "Large Hadron Collider", 
          "big data problems", 
          "proton-proton collisions", 
          "machine learning problems", 
          "high energy physics", 
          "high energy physics data", 
          "real-time applications", 
          "classification of data", 
          "tens of MHz", 
          "tensor network approach", 
          "learning process", 
          "Hadron Collider", 
          "event classification", 
          "physics data", 
          "LHCb experiment", 
          "learning problem", 
          "data problem", 
          "classification results", 
          "network approach", 
          "body systems", 
          "quantum", 
          "network", 
          "machine", 
          "optimal precision", 
          "jet", 
          "important features", 
          "key ingredient", 
          "classification", 
          "Collider", 
          "CERN", 
          "quarks", 
          "physics", 
          "collisions", 
          "fast response", 
          "tens", 
          "MHz", 
          "implementation", 
          "numerical tool", 
          "network geometry", 
          "information", 
          "tool", 
          "applications", 
          "data", 
          "system", 
          "geometry", 
          "precision", 
          "features", 
          "technique", 
          "process", 
          "way", 
          "experiments", 
          "need", 
          "results", 
          "time", 
          "analysis", 
          "ingredients", 
          "events", 
          "problem", 
          "approach", 
          "response", 
          "quantum-inspired machine", 
          "challenging big data problem", 
          "high-frequency real-time applications", 
          "future LHCb event classification", 
          "LHCb event classification"
        ], 
        "name": "Quantum-inspired machine learning on high-energy physics data", 
        "pagination": "111", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1139694997"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41534-021-00443-w"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41534-021-00443-w", 
          "https://app.dimensions.ai/details/publication/pub.1139694997"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_918.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41534-021-00443-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41534-021-00443-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41534-021-00443-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41534-021-00443-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41534-021-00443-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    218 TRIPLES      22 PREDICATES      101 URIs      84 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41534-021-00443-w schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nb9281251a66e4a6a8013df79567f8b5a
    4 schema:citation sg:pub.10.1007/978-3-030-01409-4
    5 sg:pub.10.1007/978-3-319-96424-9
    6 sg:pub.10.1007/bf02289464
    7 sg:pub.10.1007/jhep10(2018)093
    8 sg:pub.10.1007/s00041-009-9094-9
    9 sg:pub.10.1038/nature14539
    10 sg:pub.10.1038/nature16961
    11 sg:pub.10.1088/1126-6708/2008/04/063
    12 sg:pub.10.1140/epjd/e2020-100571-8
    13 schema:datePublished 2021-07-15
    14 schema:datePublishedReg 2021-07-15
    15 schema:description Tensor Networks, a numerical tool originally designed for simulating quantum many-body systems, have recently been applied to solve Machine Learning problems. Exploiting a tree tensor network, we apply a quantum-inspired machine learning technique to a very important and challenging big data problem in high-energy physics: the analysis and classification of data produced by the Large Hadron Collider at CERN. In particular, we present how to effectively classify so-called b-jets, jets originating from b-quarks from proton–proton collisions in the LHCb experiment, and how to interpret the classification results. We exploit the Tensor Network approach to select important features and adapt the network geometry based on information acquired in the learning process. Finally, we show how to adapt the tree tensor network to achieve optimal precision or fast response in time without the need of repeating the learning process. These results pave the way to the implementation of high-frequency real-time applications, a key ingredient needed among others for current and future LHCb event classification able to trigger events at the tens of MHz scale.
    16 schema:genre article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree true
    19 schema:isPartOf N033d59c4d82c4642a7d4852c552cba96
    20 N8006497dd1eb4785b8c3826ac90a0aed
    21 sg:journal.1285192
    22 schema:keywords CERN
    23 Collider
    24 Hadron Collider
    25 LHCb event classification
    26 LHCb experiment
    27 Large Hadron Collider
    28 MHz
    29 analysis
    30 applications
    31 approach
    32 big data problems
    33 body systems
    34 challenging big data problem
    35 classification
    36 classification of data
    37 classification results
    38 collisions
    39 data
    40 data problem
    41 event classification
    42 events
    43 experiments
    44 fast response
    45 features
    46 future LHCb event classification
    47 geometry
    48 high energy physics
    49 high energy physics data
    50 high-frequency real-time applications
    51 implementation
    52 important features
    53 information
    54 ingredients
    55 jet
    56 key ingredient
    57 learning problem
    58 learning process
    59 machine
    60 machine learning problems
    61 need
    62 network
    63 network approach
    64 network geometry
    65 numerical tool
    66 optimal precision
    67 physics
    68 physics data
    69 precision
    70 problem
    71 process
    72 proton-proton collisions
    73 quantum
    74 quantum-inspired machine
    75 quarks
    76 real-time applications
    77 response
    78 results
    79 system
    80 technique
    81 tens
    82 tens of MHz
    83 tensor network approach
    84 tensor networks
    85 time
    86 tool
    87 tree tensor network
    88 way
    89 schema:name Quantum-inspired machine learning on high-energy physics data
    90 schema:pagination 111
    91 schema:productId Nae1fe49185654f69a2c017c0a4322412
    92 Ndfbdfadf08e94a488b10af89b1cd1129
    93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139694997
    94 https://doi.org/10.1038/s41534-021-00443-w
    95 schema:sdDatePublished 2022-01-01T19:02
    96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    97 schema:sdPublisher N20eca7b467994154b28109eeeb6d71e2
    98 schema:url https://doi.org/10.1038/s41534-021-00443-w
    99 sgo:license sg:explorer/license/
    100 sgo:sdDataset articles
    101 rdf:type schema:ScholarlyArticle
    102 N033d59c4d82c4642a7d4852c552cba96 schema:issueNumber 1
    103 rdf:type schema:PublicationIssue
    104 N20eca7b467994154b28109eeeb6d71e2 schema:name Springer Nature - SN SciGraph project
    105 rdf:type schema:Organization
    106 N21ea2e4dae754b2fada9b8d3e7b63615 rdf:first sg:person.016610712707.36
    107 rdf:rest N4a75dd0292b74448b8ce0cfbef337421
    108 N3b044f9787064c32b53ebf332aab6e82 rdf:first sg:person.012755563116.66
    109 rdf:rest N86fdff1048144c5c867f08ceb7ad082f
    110 N4a75dd0292b74448b8ce0cfbef337421 rdf:first sg:person.0761227611.56
    111 rdf:rest rdf:nil
    112 N8006497dd1eb4785b8c3826ac90a0aed schema:volumeNumber 7
    113 rdf:type schema:PublicationVolume
    114 N86fdff1048144c5c867f08ceb7ad082f rdf:first sg:person.014306436111.34
    115 rdf:rest N21ea2e4dae754b2fada9b8d3e7b63615
    116 N8f5a0770ec7a40ec8e9dd2586b1855ee rdf:first sg:person.012054514205.04
    117 rdf:rest N3b044f9787064c32b53ebf332aab6e82
    118 Na13ca41a49214a6ea4206b423bf0acc7 rdf:first sg:person.012645361711.42
    119 rdf:rest N8f5a0770ec7a40ec8e9dd2586b1855ee
    120 Nae1fe49185654f69a2c017c0a4322412 schema:name dimensions_id
    121 schema:value pub.1139694997
    122 rdf:type schema:PropertyValue
    123 Nb9281251a66e4a6a8013df79567f8b5a rdf:first sg:person.012623565221.18
    124 rdf:rest Na13ca41a49214a6ea4206b423bf0acc7
    125 Ndfbdfadf08e94a488b10af89b1cd1129 schema:name doi
    126 schema:value 10.1038/s41534-021-00443-w
    127 rdf:type schema:PropertyValue
    128 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Information and Computing Sciences
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Artificial Intelligence and Image Processing
    133 rdf:type schema:DefinedTerm
    134 sg:grant.7820181 http://pending.schema.org/fundedItem sg:pub.10.1038/s41534-021-00443-w
    135 rdf:type schema:MonetaryGrant
    136 sg:journal.1285192 schema:issn 2056-6387
    137 schema:name npj Quantum Information
    138 schema:publisher Springer Nature
    139 rdf:type schema:Periodical
    140 sg:person.012054514205.04 schema:affiliation grid-institutes:grid.470212.2
    141 schema:familyName Sestini
    142 schema:givenName Lorenzo
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012054514205.04
    144 rdf:type schema:Person
    145 sg:person.012623565221.18 schema:affiliation grid-institutes:grid.11749.3a
    146 schema:familyName Felser
    147 schema:givenName Timo
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012623565221.18
    149 rdf:type schema:Person
    150 sg:person.012645361711.42 schema:affiliation grid-institutes:grid.5608.b
    151 schema:familyName Trenti
    152 schema:givenName Marco
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012645361711.42
    154 rdf:type schema:Person
    155 sg:person.012755563116.66 schema:affiliation grid-institutes:grid.470212.2
    156 schema:familyName Gianelle
    157 schema:givenName Alessio
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012755563116.66
    159 rdf:type schema:Person
    160 sg:person.014306436111.34 schema:affiliation grid-institutes:grid.470212.2
    161 schema:familyName Zuliani
    162 schema:givenName Davide
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014306436111.34
    164 rdf:type schema:Person
    165 sg:person.016610712707.36 schema:affiliation grid-institutes:grid.470212.2
    166 schema:familyName Lucchesi
    167 schema:givenName Donatella
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016610712707.36
    169 rdf:type schema:Person
    170 sg:person.0761227611.56 schema:affiliation grid-institutes:grid.5608.b
    171 schema:familyName Montangero
    172 schema:givenName Simone
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761227611.56
    174 rdf:type schema:Person
    175 sg:pub.10.1007/978-3-030-01409-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110287442
    176 https://doi.org/10.1007/978-3-030-01409-4
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/978-3-319-96424-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109611129
    179 https://doi.org/10.1007/978-3-319-96424-9
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/bf02289464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002217813
    182 https://doi.org/10.1007/bf02289464
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/jhep10(2018)093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107641016
    185 https://doi.org/10.1007/jhep10(2018)093
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s00041-009-9094-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048162286
    188 https://doi.org/10.1007/s00041-009-9094-9
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nature14539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020120
    191 https://doi.org/10.1038/nature14539
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nature16961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039427823
    194 https://doi.org/10.1038/nature16961
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1088/1126-6708/2008/04/063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023852876
    197 https://doi.org/10.1088/1126-6708/2008/04/063
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1140/epjd/e2020-100571-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129874280
    200 https://doi.org/10.1140/epjd/e2020-100571-8
    201 rdf:type schema:CreativeWork
    202 grid-institutes:grid.11749.3a schema:alternateName Theoretische Physik, Universität des Saarlandes, Saarbrücken, Germany
    203 schema:name Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Padova, Italy
    204 INFN, Sezione di Padova, Padova, Italy
    205 Tensor Solutions, Institute for Complex Quantum Systems, University of Ulm, Ulm, Germany
    206 Theoretische Physik, Universität des Saarlandes, Saarbrücken, Germany
    207 rdf:type schema:Organization
    208 grid-institutes:grid.470212.2 schema:alternateName INFN, Sezione di Padova, Padova, Italy
    209 schema:name Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Padova, Italy
    210 INFN, Sezione di Padova, Padova, Italy
    211 rdf:type schema:Organization
    212 grid-institutes:grid.5608.b schema:alternateName Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Padova, Italy
    213 Padua Quantum Technologies Research Center, Università degli Studi di Padova, Padova, Italy
    214 schema:name Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Padova, Italy
    215 INFN, Sezione di Padova, Padova, Italy
    216 Padua Quantum Technologies Research Center, Università degli Studi di Padova, Padova, Italy
    217 Tensor Solutions, Institute for Complex Quantum Systems, University of Ulm, Ulm, Germany
    218 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...