The role of quantum coherence in non-equilibrium entropy production View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Jader P. Santos, Lucas C. Céleri, Gabriel T. Landi, Mauro Paternostro

ABSTRACT

Thermodynamic irreversibility is well characterized by the entropy production arising from non-equilibrium quantum processes. We show that the entropy production of a quantum system undergoing open-system dynamics can be formally split into a term that only depends on population unbalances, and one that is underpinned by quantum coherences. This allows us to identify a genuine quantum contribution to the entropy production in non-equilibrium quantum processes. We discuss how these features emerge both in Lindblad-Davies differential maps and finite maps subject to the constraints of thermal operations. We also show how this separation naturally leads to two independent entropic conservation laws for the global system-environment dynamics, one referring to the redistribution of populations between system and environment and the other describing how the coherence initially present in the system is distributed into local coherences in the environment and non-local coherences in the system-environment state. Finally, we discuss how the processing of quantum coherences and the incompatibility of non-commuting measurements leads to fundamental limitations in the description of quantum trajectories and fluctuation theorems. More... »

PAGES

23

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41534-019-0138-y

DOI

http://dx.doi.org/10.1038/s41534-019-0138-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112472491


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Sao Paulo", 
          "id": "https://www.grid.ac/institutes/grid.11899.38", 
          "name": [
            "Instituto de F\u00edsica da Universidade de S\u00e3o Paulo, 05314-970, S\u00e3o Paulo, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Santos", 
        "givenName": "Jader P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade Federal de Goi\u00e1s", 
          "id": "https://www.grid.ac/institutes/grid.411195.9", 
          "name": [
            "Instituto de F\u00edsica, Universidade Federal de Goi\u00e1s, Caixa Postal 131, 74001-970, Goi\u00e2nia, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "C\u00e9leri", 
        "givenName": "Lucas C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sao Paulo", 
          "id": "https://www.grid.ac/institutes/grid.11899.38", 
          "name": [
            "Instituto de F\u00edsica da Universidade de S\u00e3o Paulo, 05314-970, S\u00e3o Paulo, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Landi", 
        "givenName": "Gabriel T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen's University Belfast", 
          "id": "https://www.grid.ac/institutes/grid.4777.3", 
          "name": [
            "Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen\u2019s University Belfast, BT7 1NN, Belfast, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paternostro", 
        "givenName": "Mauro", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep22174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001365868", 
          "https://doi.org/10.1038/srep22174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.250404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003755374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.250404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003755374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004156318", 
          "https://doi.org/10.1038/nphys1342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00815357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006944777", 
          "https://doi.org/10.1007/bf00815357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007800548", 
          "https://doi.org/10.1038/nphys1958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01609396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009965186", 
          "https://doi.org/10.1007/bf01609396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01609396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009965186", 
          "https://doi.org/10.1007/bf01609396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms7383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012643107", 
          "https://doi.org/10.1038/ncomms7383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.210403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014265829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.210403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014265829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016203284", 
          "https://doi.org/10.1038/nphys1202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.180402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016602140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.180402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016602140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1411728112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017146799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.140401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020464847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.140401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020464847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.021001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024388178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.021001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024388178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.051113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029655646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.051113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029655646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1023208217925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029946085", 
          "https://doi.org/10.1023/a:1023208217925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031347512", 
          "https://doi.org/10.1038/ncomms3059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/46/39/395001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031942422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/12/1/013013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033162575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/12/1/013013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033162575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.032105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038648688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.032105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038648688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.140404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038801237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.140404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038801237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.523789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058100809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/18/2/023045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059137299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.105.1695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.105.1695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.37.405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060446178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.37.405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060446178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.38.2265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060446479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.38.2265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060446479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.91.1512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060460949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.91.1512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060460949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.93.052335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060515720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.93.052335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060515720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.94.022329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060516360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.94.022329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060516360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.24.1516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060688996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.24.1516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060688996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.82.021120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060740830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.82.021120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060740830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.92.032129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060748093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.92.032129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060748093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.94.012128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060750036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.94.012128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060750036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.020601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.020601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.17.195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060837217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.17.195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060837217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.48.571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.48.571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.19071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062238661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41534-017-0008-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084130052", 
          "https://doi.org/10.1038/s41534-017-0008-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.7.021003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084604565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.7.021003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084604565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.89.041003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092447927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.89.041003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092447927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780199213900.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098756837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4997044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100699517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.8.031037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106012799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.8.031037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106012799"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Thermodynamic irreversibility is well characterized by the entropy production arising from non-equilibrium quantum processes. We show that the entropy production of a quantum system undergoing open-system dynamics can be formally split into a term that only depends on population unbalances, and one that is underpinned by quantum coherences. This allows us to identify a genuine quantum contribution to the entropy production in non-equilibrium quantum processes. We discuss how these features emerge both in Lindblad-Davies differential maps and finite maps subject to the constraints of thermal operations. We also show how this separation naturally leads to two independent entropic conservation laws for the global system-environment dynamics, one referring to the redistribution of populations between system and environment and the other describing how the coherence initially present in the system is distributed into local coherences in the environment and non-local coherences in the system-environment state. Finally, we discuss how the processing of quantum coherences and the incompatibility of non-commuting measurements leads to fundamental limitations in the description of quantum trajectories and fluctuation theorems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41534-019-0138-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7070038", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1285192", 
        "issn": [
          "2056-6387"
        ], 
        "name": "npj Quantum Information", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "The role of quantum coherence in non-equilibrium entropy production", 
    "pagination": "23", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a594678f435bbd52b8e237d40975ebf12e55091d9687b9ca0532f2ab58d7f7f4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41534-019-0138-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112472491"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41534-019-0138-y", 
      "https://app.dimensions.ai/details/publication/pub.1112472491"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113677_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41534-019-0138-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41534-019-0138-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41534-019-0138-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41534-019-0138-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41534-019-0138-y'


 

This table displays all metadata directly associated to this object as RDF triples.

221 TRIPLES      21 PREDICATES      69 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41534-019-0138-y schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N431f9bb860c34c9a9cd1a81e19b9a3ad
4 schema:citation sg:pub.10.1007/bf00815357
5 sg:pub.10.1007/bf01609396
6 sg:pub.10.1023/a:1023208217925
7 sg:pub.10.1038/ncomms3059
8 sg:pub.10.1038/ncomms7383
9 sg:pub.10.1038/nphys1202
10 sg:pub.10.1038/nphys1342
11 sg:pub.10.1038/nphys1958
12 sg:pub.10.1038/s41534-017-0008-4
13 sg:pub.10.1038/srep22174
14 https://doi.org/10.1063/1.4997044
15 https://doi.org/10.1063/1.523789
16 https://doi.org/10.1073/pnas.1411728112
17 https://doi.org/10.1088/1367-2630/12/1/013013
18 https://doi.org/10.1088/1367-2630/18/2/023045
19 https://doi.org/10.1088/1751-8113/46/39/395001
20 https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
21 https://doi.org/10.1103/physrev.105.1695
22 https://doi.org/10.1103/physrev.37.405
23 https://doi.org/10.1103/physrev.38.2265
24 https://doi.org/10.1103/physrev.91.1512
25 https://doi.org/10.1103/physreva.68.032105
26 https://doi.org/10.1103/physreva.93.052335
27 https://doi.org/10.1103/physreva.94.022329
28 https://doi.org/10.1103/physrevd.24.1516
29 https://doi.org/10.1103/physreve.82.021120
30 https://doi.org/10.1103/physreve.85.051113
31 https://doi.org/10.1103/physreve.92.032129
32 https://doi.org/10.1103/physreve.94.012128
33 https://doi.org/10.1103/physrevlett.107.140404
34 https://doi.org/10.1103/physrevlett.108.020601
35 https://doi.org/10.1103/physrevlett.111.250404
36 https://doi.org/10.1103/physrevlett.113.140401
37 https://doi.org/10.1103/physrevlett.115.210403
38 https://doi.org/10.1103/physrevlett.89.180402
39 https://doi.org/10.1103/physrevx.5.021001
40 https://doi.org/10.1103/physrevx.7.021003
41 https://doi.org/10.1103/physrevx.8.031037
42 https://doi.org/10.1103/revmodphys.17.195
43 https://doi.org/10.1103/revmodphys.48.571
44 https://doi.org/10.1103/revmodphys.89.041003
45 https://doi.org/10.1119/1.19071
46 schema:datePublished 2019-12
47 schema:datePublishedReg 2019-12-01
48 schema:description Thermodynamic irreversibility is well characterized by the entropy production arising from non-equilibrium quantum processes. We show that the entropy production of a quantum system undergoing open-system dynamics can be formally split into a term that only depends on population unbalances, and one that is underpinned by quantum coherences. This allows us to identify a genuine quantum contribution to the entropy production in non-equilibrium quantum processes. We discuss how these features emerge both in Lindblad-Davies differential maps and finite maps subject to the constraints of thermal operations. We also show how this separation naturally leads to two independent entropic conservation laws for the global system-environment dynamics, one referring to the redistribution of populations between system and environment and the other describing how the coherence initially present in the system is distributed into local coherences in the environment and non-local coherences in the system-environment state. Finally, we discuss how the processing of quantum coherences and the incompatibility of non-commuting measurements leads to fundamental limitations in the description of quantum trajectories and fluctuation theorems.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf N8af6725e2721440ea47065eae764aaf0
53 N9672c25562bb47e5aac2bf09b92bf022
54 sg:journal.1285192
55 schema:name The role of quantum coherence in non-equilibrium entropy production
56 schema:pagination 23
57 schema:productId N768665e6e5dd498ba2a0becad624851c
58 N8fef3a7ed545453fb3471e890df5a7f4
59 Nc3b15c73733f4051addaae0b21b02cbf
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112472491
61 https://doi.org/10.1038/s41534-019-0138-y
62 schema:sdDatePublished 2019-04-11T10:39
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N42cbb11698b840869c4d0cd1b482f710
65 schema:url https://www.nature.com/articles/s41534-019-0138-y
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N1b2ecad3eddc4ab0a135a95eb1fb3dc4 schema:affiliation https://www.grid.ac/institutes/grid.4777.3
70 schema:familyName Paternostro
71 schema:givenName Mauro
72 rdf:type schema:Person
73 N42cbb11698b840869c4d0cd1b482f710 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N431f9bb860c34c9a9cd1a81e19b9a3ad rdf:first Ne67ce0e59a1b45189a015c16df6a81ba
76 rdf:rest Nb5d8d2fd27e840bdb2fc72d904247f4b
77 N6f9cef93d0f248138ab997b8f9423403 schema:affiliation https://www.grid.ac/institutes/grid.411195.9
78 schema:familyName Céleri
79 schema:givenName Lucas C.
80 rdf:type schema:Person
81 N768665e6e5dd498ba2a0becad624851c schema:name doi
82 schema:value 10.1038/s41534-019-0138-y
83 rdf:type schema:PropertyValue
84 N8af6725e2721440ea47065eae764aaf0 schema:issueNumber 1
85 rdf:type schema:PublicationIssue
86 N8fef3a7ed545453fb3471e890df5a7f4 schema:name dimensions_id
87 schema:value pub.1112472491
88 rdf:type schema:PropertyValue
89 N9672c25562bb47e5aac2bf09b92bf022 schema:volumeNumber 5
90 rdf:type schema:PublicationVolume
91 Nae455853e5814e97ac7ec19ef56be0cd rdf:first N1b2ecad3eddc4ab0a135a95eb1fb3dc4
92 rdf:rest rdf:nil
93 Nb5d8d2fd27e840bdb2fc72d904247f4b rdf:first N6f9cef93d0f248138ab997b8f9423403
94 rdf:rest Nbdf3c5c434a0444cb5021a4021f9a5f1
95 Nbdf3c5c434a0444cb5021a4021f9a5f1 rdf:first Ne196f617ac78459b8477b888278a06de
96 rdf:rest Nae455853e5814e97ac7ec19ef56be0cd
97 Nc3b15c73733f4051addaae0b21b02cbf schema:name readcube_id
98 schema:value a594678f435bbd52b8e237d40975ebf12e55091d9687b9ca0532f2ab58d7f7f4
99 rdf:type schema:PropertyValue
100 Ne196f617ac78459b8477b888278a06de schema:affiliation https://www.grid.ac/institutes/grid.11899.38
101 schema:familyName Landi
102 schema:givenName Gabriel T.
103 rdf:type schema:Person
104 Ne67ce0e59a1b45189a015c16df6a81ba schema:affiliation https://www.grid.ac/institutes/grid.11899.38
105 schema:familyName Santos
106 schema:givenName Jader P.
107 rdf:type schema:Person
108 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
109 schema:name Physical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
112 schema:name Quantum Physics
113 rdf:type schema:DefinedTerm
114 sg:grant.7070038 http://pending.schema.org/fundedItem sg:pub.10.1038/s41534-019-0138-y
115 rdf:type schema:MonetaryGrant
116 sg:journal.1285192 schema:issn 2056-6387
117 schema:name npj Quantum Information
118 rdf:type schema:Periodical
119 sg:pub.10.1007/bf00815357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006944777
120 https://doi.org/10.1007/bf00815357
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/bf01609396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009965186
123 https://doi.org/10.1007/bf01609396
124 rdf:type schema:CreativeWork
125 sg:pub.10.1023/a:1023208217925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029946085
126 https://doi.org/10.1023/a:1023208217925
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/ncomms3059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031347512
129 https://doi.org/10.1038/ncomms3059
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/ncomms7383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012643107
132 https://doi.org/10.1038/ncomms7383
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/nphys1202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016203284
135 https://doi.org/10.1038/nphys1202
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nphys1342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004156318
138 https://doi.org/10.1038/nphys1342
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nphys1958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007800548
141 https://doi.org/10.1038/nphys1958
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/s41534-017-0008-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084130052
144 https://doi.org/10.1038/s41534-017-0008-4
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/srep22174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001365868
147 https://doi.org/10.1038/srep22174
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.4997044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100699517
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1063/1.523789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058100809
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1073/pnas.1411728112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017146799
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1088/1367-2630/12/1/013013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033162575
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1088/1367-2630/18/2/023045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059137299
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1088/1751-8113/46/39/395001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031942422
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/acprof:oso/9780199213900.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098756837
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrev.105.1695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060418541
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrev.37.405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060446178
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrev.38.2265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060446479
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrev.91.1512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060460949
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physreva.68.032105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038648688
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physreva.93.052335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060515720
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physreva.94.022329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060516360
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevd.24.1516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060688996
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physreve.82.021120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060740830
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physreve.85.051113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029655646
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physreve.92.032129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060748093
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physreve.94.012128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060750036
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.107.140404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038801237
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.108.020601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060759256
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevlett.111.250404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003755374
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevlett.113.140401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020464847
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevlett.115.210403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014265829
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevlett.89.180402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016602140
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevx.5.021001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024388178
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevx.7.021003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084604565
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevx.8.031037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106012799
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/revmodphys.17.195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060837217
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/revmodphys.48.571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838840
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/revmodphys.89.041003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092447927
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1119/1.19071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062238661
212 rdf:type schema:CreativeWork
213 https://www.grid.ac/institutes/grid.11899.38 schema:alternateName University of Sao Paulo
214 schema:name Instituto de Física da Universidade de São Paulo, 05314-970, São Paulo, Brazil
215 rdf:type schema:Organization
216 https://www.grid.ac/institutes/grid.411195.9 schema:alternateName Universidade Federal de Goiás
217 schema:name Instituto de Física, Universidade Federal de Goiás, Caixa Postal 131, 74001-970, Goiânia, Brazil
218 rdf:type schema:Organization
219 https://www.grid.ac/institutes/grid.4777.3 schema:alternateName Queen's University Belfast
220 schema:name Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen’s University Belfast, BT7 1NN, Belfast, UK
221 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...