Deterministic bidirectional communication and remote entanglement generation between superconducting qubits View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

N. Leung, Y. Lu, S. Chakram, R. K. Naik, N. Earnest, R. Ma, K. Jacobs, A. N. Cleland, D. I. Schuster

ABSTRACT

We propose and experimentally demonstrate an efficient scheme for bidirectional and deterministic photonic communication between two remote superconducting modules. The two chips, each consists of a transmon, are connected through a one-meter long coaxial cable that is coupled to a dedicated “communication” resonator on each chip. The two communication resonators hybridize with a mode of the cable to form a dark “communication mode” that is highly immune to decay in the coaxial cable. We overcome the various restrictions of quantum communication channels established by other recent approaches in deterministic communication for superconducting qubits. Our approach enables bidirectional communication, and eliminates the high insertion loss and large volume footprint of circulators. We modulate the transmon frequency via a parametric drive to generate sideband interactions between the transmon and the communication mode. We demonstrate bidirectional single-photon transfer with a success probability exceeding 60%, and generate an entangled Bell pair with a fidelity of 79.3 ± 0.3%. Quantum information can be passed between qubit devices by using nonlinear interactions to control transmission through a connecting cable. The construction of quantum networks and larger-scale quantum computers requires interconnections that can coherently transfer quantum information over long distances and between separate computing modules. Recent experiments have used controlled emission and absorption of microwave photons to produce one-way transmission between superconducting circuits. Nelson Leung and Yao Lu from the University of Chicago, with collaborators in the USA, have demonstrated two-way communication through a one-metre long coaxial cable. Manipulating the nonlinearities of their superconducting circuits via external controls allows the coupling between the qubits and the cable, and hence the inter-module transmission, to be turned on and off as necessary. This approach avoids some of the drawbacks of other quantum communication solutions with one-way transmission. More... »

PAGES

18

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41534-019-0128-0

DOI

http://dx.doi.org/10.1038/s41534-019-0128-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112165506


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Chicago", 
          "id": "https://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "The James Franck Institute and Department of Physics, University of Chicago, 60637, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leung", 
        "givenName": "N.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chicago", 
          "id": "https://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "The James Franck Institute and Department of Physics, University of Chicago, 60637, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Y.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chicago", 
          "id": "https://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "The James Franck Institute and Department of Physics, University of Chicago, 60637, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chakram", 
        "givenName": "S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chicago", 
          "id": "https://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "The James Franck Institute and Department of Physics, University of Chicago, 60637, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naik", 
        "givenName": "R. K.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chicago", 
          "id": "https://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "The James Franck Institute and Department of Physics, University of Chicago, 60637, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Earnest", 
        "givenName": "N.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chicago", 
          "id": "https://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "The James Franck Institute and Department of Physics, University of Chicago, 60637, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Massachusetts Boston", 
          "id": "https://www.grid.ac/institutes/grid.266685.9", 
          "name": [
            "U.S. Army Research Laboratory, Computational and Information Sciences Directorate, 20783, Adelphi, MD, USA", 
            "Department of Physics, University of Massachusetts at Boston, 02125, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jacobs", 
        "givenName": "K.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute for Molecular Engineering, University of Chicago, 60637, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cleland", 
        "givenName": "A. N.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chicago", 
          "id": "https://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "The James Franck Institute and Department of Physics, University of Chicago, 60637, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schuster", 
        "givenName": "D. I.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreva.83.063842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000256383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.83.063842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000256383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.220505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004332925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.220505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004332925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/86/14007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007417842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/npjqi.2016.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010209646", 
          "https://doi.org/10.1038/npjqi.2016.2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.4.041010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010551240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.4.041010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010551240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.062323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015020615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.062323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015020615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.032324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016194747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.032324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016194747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.107001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018154062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.107001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018154062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.89.033857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018745411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.89.033857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018745411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.133601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018891881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.133601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018891881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/24/6/065001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025099404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.022305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028212546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.022305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028212546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.64.052312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028732846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.64.052312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028732846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.210501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029858504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.210501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029858504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4863745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031230535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.6.031036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031633774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.6.031036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031633774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.023837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032704464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.023837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032704464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032952067", 
          "https://doi.org/10.1038/nphys1112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35059017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033681345", 
          "https://doi.org/10.1038/35059017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35059017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033681345", 
          "https://doi.org/10.1038/35059017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.89.022317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033769866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.89.022317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033769866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4919759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036944152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040940806", 
          "https://doi.org/10.1038/nphoton.2010.1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.170501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041193931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.170501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041193931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.180511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043761170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.180511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043761170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms7787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047526722", 
          "https://doi.org/10.1038/ncomms7787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.220502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052239889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.220502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052239889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.471424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058050278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.80.013417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060506429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.80.013417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060506429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevapplied.6.064007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060517987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevapplied.6.064007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060517987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.123601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060762608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.123601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060762608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.080501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.080501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/49.848236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061178336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmtt.2012.2187538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061709549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/114/40007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064227573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41534-017-0044-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092092305", 
          "https://doi.org/10.1038/s41534-017-0044-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.150502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092218411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.150502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092218411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-02046-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093066661", 
          "https://doi.org/10.1038/s41467-017-02046-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5014033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100868376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physicsphysiquefizika.1.195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101010389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.97.064508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101024593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.97.064508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101024593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41567-018-0115-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103565835", 
          "https://doi.org/10.1038/s41567-018-0115-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.120.200501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104021195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.120.200501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104021195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-018-0195-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104381213", 
          "https://doi.org/10.1038/s41586-018-0195-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-018-0470-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106636533", 
          "https://doi.org/10.1038/s41586-018-0470-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-018-0470-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106636533", 
          "https://doi.org/10.1038/s41586-018-0470-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "We propose and experimentally demonstrate an efficient scheme for bidirectional and deterministic photonic communication between two remote superconducting modules. The two chips, each consists of a transmon, are connected through a one-meter long coaxial cable that is coupled to a dedicated \u201ccommunication\u201d resonator on each chip. The two communication resonators hybridize with a mode of the cable to form a dark \u201ccommunication mode\u201d that is highly immune to decay in the coaxial cable. We overcome the various restrictions of quantum communication channels established by other recent approaches in deterministic communication for superconducting qubits. Our approach enables bidirectional communication, and eliminates the high insertion loss and large volume footprint of circulators. We modulate the transmon frequency via a parametric drive to generate sideband interactions between the transmon and the communication mode. We demonstrate bidirectional single-photon transfer with a success probability exceeding 60%, and generate an entangled Bell pair with a fidelity of 79.3 \u00b1 0.3%. Quantum information can be passed between qubit devices by using nonlinear interactions to control transmission through a connecting cable. The construction of quantum networks and larger-scale quantum computers requires interconnections that can coherently transfer quantum information over long distances and between separate computing modules. Recent experiments have used controlled emission and absorption of microwave photons to produce one-way transmission between superconducting circuits. Nelson Leung and Yao Lu from the University of Chicago, with collaborators in the USA, have demonstrated two-way communication through a one-metre long coaxial cable. Manipulating the nonlinearities of their superconducting circuits via external controls allows the coupling between the qubits and the cable, and hence the inter-module transmission, to be turned on and off as necessary. This approach avoids some of the drawbacks of other quantum communication solutions with one-way transmission.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41534-019-0128-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4319045", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4892983", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3852411", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1285192", 
        "issn": [
          "2056-6387"
        ], 
        "name": "npj Quantum Information", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Deterministic bidirectional communication and remote entanglement generation between superconducting qubits", 
    "pagination": "18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "44123b0b5a46b645cbe48a9cc2b634bd675586cbdbffe2161904fe69be4cda85"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41534-019-0128-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112165506"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41534-019-0128-0", 
      "https://app.dimensions.ai/details/publication/pub.1112165506"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000337_0000000337/records_37553_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41534-019-0128-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41534-019-0128-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41534-019-0128-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41534-019-0128-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41534-019-0128-0'


 

This table displays all metadata directly associated to this object as RDF triples.

264 TRIPLES      21 PREDICATES      72 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41534-019-0128-0 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N4d461f3cf495460f8ef6d230ab37e2e1
4 schema:citation sg:pub.10.1038/35059017
5 sg:pub.10.1038/ncomms7787
6 sg:pub.10.1038/nphoton.2010.1
7 sg:pub.10.1038/nphys1112
8 sg:pub.10.1038/npjqi.2016.2
9 sg:pub.10.1038/s41467-017-02046-6
10 sg:pub.10.1038/s41534-017-0044-0
11 sg:pub.10.1038/s41567-018-0115-y
12 sg:pub.10.1038/s41586-018-0195-y
13 sg:pub.10.1038/s41586-018-0470-y
14 https://doi.org/10.1063/1.471424
15 https://doi.org/10.1063/1.4863745
16 https://doi.org/10.1063/1.4919759
17 https://doi.org/10.1063/1.5014033
18 https://doi.org/10.1088/0953-2048/24/6/065001
19 https://doi.org/10.1103/physicsphysiquefizika.1.195
20 https://doi.org/10.1103/physreva.64.052312
21 https://doi.org/10.1103/physreva.76.062323
22 https://doi.org/10.1103/physreva.80.013417
23 https://doi.org/10.1103/physreva.83.063842
24 https://doi.org/10.1103/physreva.86.022305
25 https://doi.org/10.1103/physreva.86.023837
26 https://doi.org/10.1103/physreva.86.032324
27 https://doi.org/10.1103/physreva.89.022317
28 https://doi.org/10.1103/physreva.89.033857
29 https://doi.org/10.1103/physrevapplied.6.064007
30 https://doi.org/10.1103/physrevb.79.180511
31 https://doi.org/10.1103/physrevb.87.220505
32 https://doi.org/10.1103/physrevb.97.064508
33 https://doi.org/10.1103/physrevlett.100.133601
34 https://doi.org/10.1103/physrevlett.110.107001
35 https://doi.org/10.1103/physrevlett.112.123601
36 https://doi.org/10.1103/physrevlett.112.170501
37 https://doi.org/10.1103/physrevlett.112.210501
38 https://doi.org/10.1103/physrevlett.113.220502
39 https://doi.org/10.1103/physrevlett.114.080501
40 https://doi.org/10.1103/physrevlett.119.150502
41 https://doi.org/10.1103/physrevlett.120.200501
42 https://doi.org/10.1103/physrevlett.58.353
43 https://doi.org/10.1103/physrevx.4.041010
44 https://doi.org/10.1103/physrevx.6.031036
45 https://doi.org/10.1109/49.848236
46 https://doi.org/10.1109/tmtt.2012.2187538
47 https://doi.org/10.1209/0295-5075/114/40007
48 https://doi.org/10.1209/0295-5075/86/14007
49 schema:datePublished 2019-12
50 schema:datePublishedReg 2019-12-01
51 schema:description We propose and experimentally demonstrate an efficient scheme for bidirectional and deterministic photonic communication between two remote superconducting modules. The two chips, each consists of a transmon, are connected through a one-meter long coaxial cable that is coupled to a dedicated “communication” resonator on each chip. The two communication resonators hybridize with a mode of the cable to form a dark “communication mode” that is highly immune to decay in the coaxial cable. We overcome the various restrictions of quantum communication channels established by other recent approaches in deterministic communication for superconducting qubits. Our approach enables bidirectional communication, and eliminates the high insertion loss and large volume footprint of circulators. We modulate the transmon frequency via a parametric drive to generate sideband interactions between the transmon and the communication mode. We demonstrate bidirectional single-photon transfer with a success probability exceeding 60%, and generate an entangled Bell pair with a fidelity of 79.3 ± 0.3%. Quantum information can be passed between qubit devices by using nonlinear interactions to control transmission through a connecting cable. The construction of quantum networks and larger-scale quantum computers requires interconnections that can coherently transfer quantum information over long distances and between separate computing modules. Recent experiments have used controlled emission and absorption of microwave photons to produce one-way transmission between superconducting circuits. Nelson Leung and Yao Lu from the University of Chicago, with collaborators in the USA, have demonstrated two-way communication through a one-metre long coaxial cable. Manipulating the nonlinearities of their superconducting circuits via external controls allows the coupling between the qubits and the cable, and hence the inter-module transmission, to be turned on and off as necessary. This approach avoids some of the drawbacks of other quantum communication solutions with one-way transmission.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree false
55 schema:isPartOf Nab89aea0cf8846efbb5bec6c0b7ad2b1
56 Nf0e9cabe7ae64002a46464985c66e637
57 sg:journal.1285192
58 schema:name Deterministic bidirectional communication and remote entanglement generation between superconducting qubits
59 schema:pagination 18
60 schema:productId N55fcae9d7b624b04b59183347b68398d
61 N828a661f2c6045d6bee92bafae1b5986
62 Nf6d8916a0dc24c218298c53d743e24e3
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112165506
64 https://doi.org/10.1038/s41534-019-0128-0
65 schema:sdDatePublished 2019-04-11T09:06
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher Nb10e5ec79bf34b219d8c0652dfcdf908
68 schema:url https://www.nature.com/articles/s41534-019-0128-0
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N0391aa9eef1f41cf973033e01e96c6c8 schema:affiliation https://www.grid.ac/institutes/grid.170205.1
73 schema:familyName Lu
74 schema:givenName Y.
75 rdf:type schema:Person
76 N1072f0800c574c2abed61dee5f202eb0 schema:affiliation https://www.grid.ac/institutes/grid.266685.9
77 schema:familyName Jacobs
78 schema:givenName K.
79 rdf:type schema:Person
80 N15b0568a546f45e0a015836f04f0c149 schema:affiliation https://www.grid.ac/institutes/grid.170205.1
81 schema:familyName Ma
82 schema:givenName R.
83 rdf:type schema:Person
84 N1dd9c904fa5242f5bf67f0a07fa2affe rdf:first Ncbf352308d944128af4fde36fd453792
85 rdf:rest N3c245e23ae564387a2b70c75305627aa
86 N24338e4a41244e24bcbb761cdb8a035e schema:affiliation https://www.grid.ac/institutes/grid.170205.1
87 schema:familyName Leung
88 schema:givenName N.
89 rdf:type schema:Person
90 N3a40763cfbfe4f659b8bccfdb94c21e9 rdf:first Ne3f580c37b8849e59e517a8340933490
91 rdf:rest Nc67a9f667de54d11b65ec86be44f1248
92 N3c245e23ae564387a2b70c75305627aa rdf:first N15b0568a546f45e0a015836f04f0c149
93 rdf:rest N712811b452784736a35cab264dd6d13d
94 N4d461f3cf495460f8ef6d230ab37e2e1 rdf:first N24338e4a41244e24bcbb761cdb8a035e
95 rdf:rest Ne8bf109952f74c76acb3187e3164bd6a
96 N55fcae9d7b624b04b59183347b68398d schema:name dimensions_id
97 schema:value pub.1112165506
98 rdf:type schema:PropertyValue
99 N712811b452784736a35cab264dd6d13d rdf:first N1072f0800c574c2abed61dee5f202eb0
100 rdf:rest N9cab6eb1d1844da8b693034e2f7d9e86
101 N828a661f2c6045d6bee92bafae1b5986 schema:name doi
102 schema:value 10.1038/s41534-019-0128-0
103 rdf:type schema:PropertyValue
104 N9856c230d552472ebcc5fcbb00ab16a4 schema:affiliation https://www.grid.ac/institutes/grid.170205.1
105 schema:familyName Naik
106 schema:givenName R. K.
107 rdf:type schema:Person
108 N9cab6eb1d1844da8b693034e2f7d9e86 rdf:first Nde320b2d6da344cea24511aceeb28ff9
109 rdf:rest Nf0855e324b2d4e2c8c0716a3bef695dd
110 Nab89aea0cf8846efbb5bec6c0b7ad2b1 schema:volumeNumber 5
111 rdf:type schema:PublicationVolume
112 Nb10e5ec79bf34b219d8c0652dfcdf908 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 Nc67a9f667de54d11b65ec86be44f1248 rdf:first N9856c230d552472ebcc5fcbb00ab16a4
115 rdf:rest N1dd9c904fa5242f5bf67f0a07fa2affe
116 Ncbf352308d944128af4fde36fd453792 schema:affiliation https://www.grid.ac/institutes/grid.170205.1
117 schema:familyName Earnest
118 schema:givenName N.
119 rdf:type schema:Person
120 Nd3ffc4481958424aaa9f61616caf2fd8 schema:name Institute for Molecular Engineering, University of Chicago, 60637, Chicago, IL, USA
121 rdf:type schema:Organization
122 Nde320b2d6da344cea24511aceeb28ff9 schema:affiliation Nd3ffc4481958424aaa9f61616caf2fd8
123 schema:familyName Cleland
124 schema:givenName A. N.
125 rdf:type schema:Person
126 Ne3f580c37b8849e59e517a8340933490 schema:affiliation https://www.grid.ac/institutes/grid.170205.1
127 schema:familyName Chakram
128 schema:givenName S.
129 rdf:type schema:Person
130 Ne8bf109952f74c76acb3187e3164bd6a rdf:first N0391aa9eef1f41cf973033e01e96c6c8
131 rdf:rest N3a40763cfbfe4f659b8bccfdb94c21e9
132 Nec93643f40b04437a16147d825923c4b schema:affiliation https://www.grid.ac/institutes/grid.170205.1
133 schema:familyName Schuster
134 schema:givenName D. I.
135 rdf:type schema:Person
136 Nf0855e324b2d4e2c8c0716a3bef695dd rdf:first Nec93643f40b04437a16147d825923c4b
137 rdf:rest rdf:nil
138 Nf0e9cabe7ae64002a46464985c66e637 schema:issueNumber 1
139 rdf:type schema:PublicationIssue
140 Nf6d8916a0dc24c218298c53d743e24e3 schema:name readcube_id
141 schema:value 44123b0b5a46b645cbe48a9cc2b634bd675586cbdbffe2161904fe69be4cda85
142 rdf:type schema:PropertyValue
143 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
144 schema:name Physical Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
147 schema:name Quantum Physics
148 rdf:type schema:DefinedTerm
149 sg:grant.3852411 http://pending.schema.org/fundedItem sg:pub.10.1038/s41534-019-0128-0
150 rdf:type schema:MonetaryGrant
151 sg:grant.4319045 http://pending.schema.org/fundedItem sg:pub.10.1038/s41534-019-0128-0
152 rdf:type schema:MonetaryGrant
153 sg:grant.4892983 http://pending.schema.org/fundedItem sg:pub.10.1038/s41534-019-0128-0
154 rdf:type schema:MonetaryGrant
155 sg:journal.1285192 schema:issn 2056-6387
156 schema:name npj Quantum Information
157 rdf:type schema:Periodical
158 sg:pub.10.1038/35059017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033681345
159 https://doi.org/10.1038/35059017
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/ncomms7787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047526722
162 https://doi.org/10.1038/ncomms7787
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nphoton.2010.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040940806
165 https://doi.org/10.1038/nphoton.2010.1
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nphys1112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032952067
168 https://doi.org/10.1038/nphys1112
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/npjqi.2016.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010209646
171 https://doi.org/10.1038/npjqi.2016.2
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/s41467-017-02046-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093066661
174 https://doi.org/10.1038/s41467-017-02046-6
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/s41534-017-0044-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092092305
177 https://doi.org/10.1038/s41534-017-0044-0
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/s41567-018-0115-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1103565835
180 https://doi.org/10.1038/s41567-018-0115-y
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/s41586-018-0195-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1104381213
183 https://doi.org/10.1038/s41586-018-0195-y
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/s41586-018-0470-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1106636533
186 https://doi.org/10.1038/s41586-018-0470-y
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1063/1.471424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058050278
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1063/1.4863745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031230535
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1063/1.4919759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036944152
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1063/1.5014033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100868376
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1088/0953-2048/24/6/065001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025099404
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physicsphysiquefizika.1.195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101010389
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physreva.64.052312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028732846
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physreva.76.062323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015020615
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physreva.80.013417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060506429
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physreva.83.063842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000256383
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physreva.86.022305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028212546
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physreva.86.023837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032704464
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physreva.86.032324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016194747
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physreva.89.022317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033769866
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physreva.89.033857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018745411
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevapplied.6.064007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060517987
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevb.79.180511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043761170
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevb.87.220505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004332925
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevb.97.064508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101024593
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physrevlett.100.133601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018891881
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physrevlett.110.107001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018154062
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/physrevlett.112.123601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060762608
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1103/physrevlett.112.170501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041193931
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1103/physrevlett.112.210501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029858504
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1103/physrevlett.113.220502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052239889
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1103/physrevlett.114.080501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060763407
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1103/physrevlett.119.150502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092218411
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1103/physrevlett.120.200501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104021195
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1103/physrevlett.58.353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795253
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1103/physrevx.4.041010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010551240
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1103/physrevx.6.031036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031633774
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1109/49.848236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061178336
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1109/tmtt.2012.2187538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061709549
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1209/0295-5075/114/40007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064227573
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1209/0295-5075/86/14007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007417842
257 rdf:type schema:CreativeWork
258 https://www.grid.ac/institutes/grid.170205.1 schema:alternateName University of Chicago
259 schema:name The James Franck Institute and Department of Physics, University of Chicago, 60637, Chicago, IL, USA
260 rdf:type schema:Organization
261 https://www.grid.ac/institutes/grid.266685.9 schema:alternateName University of Massachusetts Boston
262 schema:name Department of Physics, University of Massachusetts at Boston, 02125, Boston, MA, USA
263 U.S. Army Research Laboratory, Computational and Information Sciences Directorate, 20783, Adelphi, MD, USA
264 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...