Quantum key distribution with setting-choice-independently correlated light sources View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Akihiro Mizutani, Go Kato, Koji Azuma, Marcos Curty, Rikizo Ikuta, Takashi Yamamoto, Nobuyuki Imoto, Hoi-Kwong Lo, Kiyoshi Tamaki

ABSTRACT

Despite the enormous theoretical and experimental progress made so far in quantum key distribution (QKD), the security of most existing practical QKD systems is not rigorously established yet. A critical obstacle is that almost all existing security proofs make ideal assumptions on the QKD devices. Problematically, such assumptions are hard to satisfy in the experiments, and therefore it is not obvious how to apply such security proofs to practical QKD systems. Fortunately, any imperfections and security-loopholes in the measurement devices can be perfectly closed by measurement-device-independent QKD (MDI-QKD), and thus we only need to consider how to secure the source devices. Among imperfections in the source devices, correlations between the sending pulses and modulation fluctuations are one of the principal problems, which unfortunately most of the existing security proofs do not consider. In this paper, we take into account these imperfections and enhance the implementation security of QKD. Specifically, we consider a setting-choice-independent correlation (SCIC) framework in which the sending pulses can present arbitrary correlations but they are independent of the previous setting choices such as the bit, the basis and the intensity settings. Within the framework of SCIC, we consider the dominant fluctuations of the sending states, such as the relative phases and the intensities, and provide a self-contained information-theoretic security proof for the loss-tolerant QKD protocol in the finite-key regime. We demonstrate the feasibility of secure quantum communication, and thus our work constitutes a crucial step towards guaranteeing the security of practical QKD systems. A rigorous study on source device security brings practical quantum key distribution (QKD) a step closer to information theoretic security. Existing studies on the security of QKD focus on potential security breaches from imperfect measurement devices, but have overlooked loopholes associated to source imperfections. To tackle this problem, Akihiro Mizutani and co-workers in Japan, Spain and Canada consider the security of an imperfect quantum source that sends pulses with arbitrary correlations, and fluctuations in phase and intensity. They numerically prove that secure quantum communications is feasible provided that these correlations are independent of the choices made for bit, basis and intensity. Their information theoretic security proof with setting-choice-independent correlations in the source is based on practically viable, loss-tolerant QKD in the finite-key regime. The team is confident that their findings will help realize secure quantum communication with practical source devices. More... »

PAGES

8

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41534-018-0122-y

DOI

http://dx.doi.org/10.1038/s41534-018-0122-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111620285


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mitsubishi Electric (Japan)", 
          "id": "https://www.grid.ac/institutes/grid.462605.3", 
          "name": [
            "Graduate School of Engineering Science, Osaka University, 560-8531, Toyonaka, Osaka, Japan", 
            "Mitsubishi Electric Corporation, Information Technology R&D Center, 5-1-1 Ofuna, 247-8501, Kamakura-shi, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mizutani", 
        "givenName": "Akihiro", 
        "id": "sg:person.01212216042.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212216042.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nippon Telegraph and Telephone (Japan)", 
          "id": "https://www.grid.ac/institutes/grid.419819.c", 
          "name": [
            "NTT Communication Science Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, 243-0198, Atsugi, Kanagawa, Japan", 
            "NTT Research Center for Theoretical Quantum Physics, NTT Corporation, 3-1 Morinosato-Wakamiya, 243-0198, Atsugi, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kato", 
        "givenName": "Go", 
        "id": "sg:person.010077553251.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077553251.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nippon Telegraph and Telephone (Japan)", 
          "id": "https://www.grid.ac/institutes/grid.419819.c", 
          "name": [
            "NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, 243-0198, Atsugi, Kanagawa, Japan", 
            "NTT Research Center for Theoretical Quantum Physics, NTT Corporation, 3-1 Morinosato-Wakamiya, 243-0198, Atsugi, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Azuma", 
        "givenName": "Koji", 
        "id": "sg:person.01102674701.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102674701.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vigo", 
          "id": "https://www.grid.ac/institutes/grid.6312.6", 
          "name": [
            "EI Telecomunicaci\u00f3n, Department of Signal Theory and Communications, University of Vigo, E-36310, Vigo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Curty", 
        "givenName": "Marcos", 
        "id": "sg:person.011116240401.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011116240401.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Graduate School of Engineering Science, Osaka University, 560-8531, Toyonaka, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ikuta", 
        "givenName": "Rikizo", 
        "id": "sg:person.01340776672.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340776672.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Graduate School of Engineering Science, Osaka University, 560-8531, Toyonaka, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamamoto", 
        "givenName": "Takashi", 
        "id": "sg:person.0644756637.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644756637.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Graduate School of Engineering Science, Osaka University, 560-8531, Toyonaka, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Imoto", 
        "givenName": "Nobuyuki", 
        "id": "sg:person.01121204603.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121204603.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Center for Quantum Information and Quantum Control, Department of Physics and Department of Electrical & Computer Engineering, University of Toronto, M5S 3G4, Toronto, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lo", 
        "givenName": "Hoi-Kwong", 
        "id": "sg:person.01021344366.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021344366.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toyama", 
          "id": "https://www.grid.ac/institutes/grid.267346.2", 
          "name": [
            "NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, 243-0198, Atsugi, Kanagawa, Japan", 
            "Graduate School of Science and Engineering for Research, University of Toyama, Gofuku 3190, 930-8555, Toyama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tamaki", 
        "givenName": "Kiyoshi", 
        "id": "sg:person.01260331242.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260331242.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms1348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000848281", 
          "https://doi.org/10.1038/ncomms1348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003655525", 
          "https://doi.org/10.1038/ncomms4732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/14/9/093014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003952122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.140501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005675438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.140501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005675438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.77.042311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008059604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.77.042311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008059604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.15.009388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012020484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.92.032305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014322904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.92.032305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014322904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.89.022307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016590088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.89.022307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016590088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30576-7_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017063403", 
          "https://doi.org/10.1007/978-3-540-30576-7_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30576-7_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017063403", 
          "https://doi.org/10.1007/978-3-540-30576-7_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcs.2014.05.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017306895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.230503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017687775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.230503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017687775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.130503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018765503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.130503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018765503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.230504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020143779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.230504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020143779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.74.022313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020517169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.74.022313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020517169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.90.052314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021801190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.90.052314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021801190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30576-7_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022842274", 
          "https://doi.org/10.1007/978-3-540-30576-7_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30576-7_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022842274", 
          "https://doi.org/10.1007/978-3-540-30576-7_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024608094", 
          "https://doi.org/10.1038/ncomms1631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024691832", 
          "https://doi.org/10.1038/nphoton.2010.214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024691832", 
          "https://doi.org/10.1038/nphoton.2010.214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2014.149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025448691", 
          "https://doi.org/10.1038/nphoton.2014.149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.057901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025620862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.057901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025620862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/16/6/063009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027328044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/13/7/073024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033557249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.91.032326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044055221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.91.032326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044055221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.010503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046453513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.010503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046453513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.230501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052676371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.230501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052676371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.78.042333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053141464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.78.042333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053141464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/4/045018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059134660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/4/045018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059134660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/17/9/093011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059136997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/49/16/165301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059174312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.78.019905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060504797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.78.019905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060504797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.92.022304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060513852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.92.022304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060513852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.93.042308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060515490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.93.042308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060515490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.93.042325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060515504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.93.042325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060515504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/optica.3.001274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065248431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2748/tmj/1178243286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070921783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.95.012333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083506552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.95.012333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083506552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41534-017-0026-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086000675", 
          "https://doi.org/10.1038/s41534-017-0026-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/optica.4.000172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1087286484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.96.012305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090537241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.96.012305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090537241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.22331/q-2017-07-14-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090728166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2058-9565/aa89bd", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091466594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sfcs.1998.743501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093394554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-02307-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100657949", 
          "https://doi.org/10.1038/s41467-017-02307-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41534-017-0057-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100657978", 
          "https://doi.org/10.1038/s41534-017-0057-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5016931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100756210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5027030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109368135"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Despite the enormous theoretical and experimental progress made so far in quantum key distribution (QKD), the security of most existing practical QKD systems is not rigorously established yet. A critical obstacle is that almost all existing security proofs make ideal assumptions on the QKD devices. Problematically, such assumptions are hard to satisfy in the experiments, and therefore it is not obvious how to apply such security proofs to practical QKD systems. Fortunately, any imperfections and security-loopholes in the measurement devices can be perfectly closed by measurement-device-independent QKD (MDI-QKD), and thus we only need to consider how to secure the source devices. Among imperfections in the source devices, correlations between the sending pulses and modulation fluctuations are one of the principal problems, which unfortunately most of the existing security proofs do not consider. In this paper, we take into account these imperfections and enhance the implementation security of QKD. Specifically, we consider a setting-choice-independent correlation (SCIC) framework in which the sending pulses can present arbitrary correlations but they are independent of the previous setting choices such as the bit, the basis and the intensity settings. Within the framework of SCIC, we consider the dominant fluctuations of the sending states, such as the relative phases and the intensities, and provide a self-contained information-theoretic security proof for the loss-tolerant QKD protocol in the finite-key regime. We demonstrate the feasibility of secure quantum communication, and thus our work constitutes a crucial step towards guaranteeing the security of practical QKD systems. A rigorous study on source device security brings practical quantum key distribution (QKD) a step closer to information theoretic security. Existing studies on the security of QKD focus on potential security breaches from imperfect measurement devices, but have overlooked loopholes associated to source imperfections. To tackle this problem, Akihiro Mizutani and co-workers in Japan, Spain and Canada consider the security of an imperfect quantum source that sends pulses with arbitrary correlations, and fluctuations in phase and intensity. They numerically prove that secure quantum communications is feasible provided that these correlations are independent of the choices made for bit, basis and intensity. Their information theoretic security proof with setting-choice-independent correlations in the source is based on practically viable, loss-tolerant QKD in the finite-key regime. The team is confident that their findings will help realize secure quantum communication with practical source devices.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41534-018-0122-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7610913", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6824705", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1285192", 
        "issn": [
          "2056-6387"
        ], 
        "name": "npj Quantum Information", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Quantum key distribution with setting-choice-independently correlated light sources", 
    "pagination": "8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "56cdc7bb6435d89c999dd9ae855fd4039fec8cc1a1cc9bb0f2785d5aa0092dab"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41534-018-0122-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111620285"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41534-018-0122-y", 
      "https://app.dimensions.ai/details/publication/pub.1111620285"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100778_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41534-018-0122-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41534-018-0122-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41534-018-0122-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41534-018-0122-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41534-018-0122-y'


 

This table displays all metadata directly associated to this object as RDF triples.

287 TRIPLES      21 PREDICATES      73 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41534-018-0122-y schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author N00907d822028427f9c6d5ed6efa419b4
4 schema:citation sg:pub.10.1007/978-3-540-30576-7_21
5 sg:pub.10.1007/978-3-540-30576-7_22
6 sg:pub.10.1038/ncomms1348
7 sg:pub.10.1038/ncomms1631
8 sg:pub.10.1038/ncomms4732
9 sg:pub.10.1038/nphoton.2010.214
10 sg:pub.10.1038/nphoton.2014.149
11 sg:pub.10.1038/s41467-017-02307-4
12 sg:pub.10.1038/s41534-017-0026-2
13 sg:pub.10.1038/s41534-017-0057-8
14 https://doi.org/10.1016/j.tcs.2014.05.025
15 https://doi.org/10.1063/1.5016931
16 https://doi.org/10.1063/1.5027030
17 https://doi.org/10.1088/1367-2630/11/4/045018
18 https://doi.org/10.1088/1367-2630/13/7/073024
19 https://doi.org/10.1088/1367-2630/14/9/093014
20 https://doi.org/10.1088/1367-2630/16/6/063009
21 https://doi.org/10.1088/1367-2630/17/9/093011
22 https://doi.org/10.1088/1751-8113/49/16/165301
23 https://doi.org/10.1088/2058-9565/aa89bd
24 https://doi.org/10.1103/physreva.74.022313
25 https://doi.org/10.1103/physreva.77.042311
26 https://doi.org/10.1103/physreva.78.019905
27 https://doi.org/10.1103/physreva.78.042333
28 https://doi.org/10.1103/physreva.89.022307
29 https://doi.org/10.1103/physreva.90.052314
30 https://doi.org/10.1103/physreva.91.032326
31 https://doi.org/10.1103/physreva.92.022304
32 https://doi.org/10.1103/physreva.92.032305
33 https://doi.org/10.1103/physreva.93.042308
34 https://doi.org/10.1103/physreva.93.042325
35 https://doi.org/10.1103/physreva.95.012333
36 https://doi.org/10.1103/physreva.96.012305
37 https://doi.org/10.1103/physrevlett.108.130503
38 https://doi.org/10.1103/physrevlett.110.010503
39 https://doi.org/10.1103/physrevlett.113.140501
40 https://doi.org/10.1103/physrevlett.91.057901
41 https://doi.org/10.1103/physrevlett.94.230503
42 https://doi.org/10.1103/physrevlett.94.230504
43 https://doi.org/10.1103/physrevlett.98.230501
44 https://doi.org/10.1109/sfcs.1998.743501
45 https://doi.org/10.1364/oe.15.009388
46 https://doi.org/10.1364/optica.3.001274
47 https://doi.org/10.1364/optica.4.000172
48 https://doi.org/10.22331/q-2017-07-14-14
49 https://doi.org/10.2748/tmj/1178243286
50 schema:datePublished 2019-12
51 schema:datePublishedReg 2019-12-01
52 schema:description Despite the enormous theoretical and experimental progress made so far in quantum key distribution (QKD), the security of most existing practical QKD systems is not rigorously established yet. A critical obstacle is that almost all existing security proofs make ideal assumptions on the QKD devices. Problematically, such assumptions are hard to satisfy in the experiments, and therefore it is not obvious how to apply such security proofs to practical QKD systems. Fortunately, any imperfections and security-loopholes in the measurement devices can be perfectly closed by measurement-device-independent QKD (MDI-QKD), and thus we only need to consider how to secure the source devices. Among imperfections in the source devices, correlations between the sending pulses and modulation fluctuations are one of the principal problems, which unfortunately most of the existing security proofs do not consider. In this paper, we take into account these imperfections and enhance the implementation security of QKD. Specifically, we consider a setting-choice-independent correlation (SCIC) framework in which the sending pulses can present arbitrary correlations but they are independent of the previous setting choices such as the bit, the basis and the intensity settings. Within the framework of SCIC, we consider the dominant fluctuations of the sending states, such as the relative phases and the intensities, and provide a self-contained information-theoretic security proof for the loss-tolerant QKD protocol in the finite-key regime. We demonstrate the feasibility of secure quantum communication, and thus our work constitutes a crucial step towards guaranteeing the security of practical QKD systems. A rigorous study on source device security brings practical quantum key distribution (QKD) a step closer to information theoretic security. Existing studies on the security of QKD focus on potential security breaches from imperfect measurement devices, but have overlooked loopholes associated to source imperfections. To tackle this problem, Akihiro Mizutani and co-workers in Japan, Spain and Canada consider the security of an imperfect quantum source that sends pulses with arbitrary correlations, and fluctuations in phase and intensity. They numerically prove that secure quantum communications is feasible provided that these correlations are independent of the choices made for bit, basis and intensity. Their information theoretic security proof with setting-choice-independent correlations in the source is based on practically viable, loss-tolerant QKD in the finite-key regime. The team is confident that their findings will help realize secure quantum communication with practical source devices.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N384a3068228145d99f76baebb9741112
57 Nee5cb373040f4ec0846438fa05c0e1e4
58 sg:journal.1285192
59 schema:name Quantum key distribution with setting-choice-independently correlated light sources
60 schema:pagination 8
61 schema:productId N39063a6ed13c4136b03cc949ade881ac
62 Ncdfe33bd1e8e4caeb4356be68e22ba8e
63 Nde6f9b7e679b49c4b107d6147aa4eaac
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111620285
65 https://doi.org/10.1038/s41534-018-0122-y
66 schema:sdDatePublished 2019-04-11T08:55
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Nc00fe83e844f4db3a9c8c215520781ba
69 schema:url https://www.nature.com/articles/s41534-018-0122-y
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N00907d822028427f9c6d5ed6efa419b4 rdf:first sg:person.01212216042.38
74 rdf:rest N32c19cc879954dd6b8bc3370e3f768a1
75 N01db0c52d21a4e70a16bf05036d2fcc6 rdf:first sg:person.01121204603.12
76 rdf:rest N3ebacf6a44e24970962422cce104655e
77 N22821bb9ab9f47e2bb5a54c8f11c1a9a rdf:first sg:person.01260331242.36
78 rdf:rest rdf:nil
79 N32c19cc879954dd6b8bc3370e3f768a1 rdf:first sg:person.010077553251.26
80 rdf:rest N6bf686684ba14ca78b49a6ee8929c241
81 N384a3068228145d99f76baebb9741112 schema:volumeNumber 5
82 rdf:type schema:PublicationVolume
83 N39063a6ed13c4136b03cc949ade881ac schema:name doi
84 schema:value 10.1038/s41534-018-0122-y
85 rdf:type schema:PropertyValue
86 N3ebacf6a44e24970962422cce104655e rdf:first sg:person.01021344366.10
87 rdf:rest N22821bb9ab9f47e2bb5a54c8f11c1a9a
88 N6bf686684ba14ca78b49a6ee8929c241 rdf:first sg:person.01102674701.15
89 rdf:rest N9a516548925d46cbbac5529abb3eda54
90 N802b79689b41453886c50876c2bb4e5b rdf:first sg:person.0644756637.29
91 rdf:rest N01db0c52d21a4e70a16bf05036d2fcc6
92 N9a516548925d46cbbac5529abb3eda54 rdf:first sg:person.011116240401.87
93 rdf:rest Na84ee154eee3424f8633848349ca218d
94 Na84ee154eee3424f8633848349ca218d rdf:first sg:person.01340776672.35
95 rdf:rest N802b79689b41453886c50876c2bb4e5b
96 Nc00fe83e844f4db3a9c8c215520781ba schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Ncdfe33bd1e8e4caeb4356be68e22ba8e schema:name readcube_id
99 schema:value 56cdc7bb6435d89c999dd9ae855fd4039fec8cc1a1cc9bb0f2785d5aa0092dab
100 rdf:type schema:PropertyValue
101 Nde6f9b7e679b49c4b107d6147aa4eaac schema:name dimensions_id
102 schema:value pub.1111620285
103 rdf:type schema:PropertyValue
104 Nee5cb373040f4ec0846438fa05c0e1e4 schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
107 schema:name Information and Computing Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
110 schema:name Data Format
111 rdf:type schema:DefinedTerm
112 sg:grant.6824705 http://pending.schema.org/fundedItem sg:pub.10.1038/s41534-018-0122-y
113 rdf:type schema:MonetaryGrant
114 sg:grant.7610913 http://pending.schema.org/fundedItem sg:pub.10.1038/s41534-018-0122-y
115 rdf:type schema:MonetaryGrant
116 sg:journal.1285192 schema:issn 2056-6387
117 schema:name npj Quantum Information
118 rdf:type schema:Periodical
119 sg:person.010077553251.26 schema:affiliation https://www.grid.ac/institutes/grid.419819.c
120 schema:familyName Kato
121 schema:givenName Go
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077553251.26
123 rdf:type schema:Person
124 sg:person.01021344366.10 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
125 schema:familyName Lo
126 schema:givenName Hoi-Kwong
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021344366.10
128 rdf:type schema:Person
129 sg:person.01102674701.15 schema:affiliation https://www.grid.ac/institutes/grid.419819.c
130 schema:familyName Azuma
131 schema:givenName Koji
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102674701.15
133 rdf:type schema:Person
134 sg:person.011116240401.87 schema:affiliation https://www.grid.ac/institutes/grid.6312.6
135 schema:familyName Curty
136 schema:givenName Marcos
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011116240401.87
138 rdf:type schema:Person
139 sg:person.01121204603.12 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
140 schema:familyName Imoto
141 schema:givenName Nobuyuki
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121204603.12
143 rdf:type schema:Person
144 sg:person.01212216042.38 schema:affiliation https://www.grid.ac/institutes/grid.462605.3
145 schema:familyName Mizutani
146 schema:givenName Akihiro
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212216042.38
148 rdf:type schema:Person
149 sg:person.01260331242.36 schema:affiliation https://www.grid.ac/institutes/grid.267346.2
150 schema:familyName Tamaki
151 schema:givenName Kiyoshi
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260331242.36
153 rdf:type schema:Person
154 sg:person.01340776672.35 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
155 schema:familyName Ikuta
156 schema:givenName Rikizo
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340776672.35
158 rdf:type schema:Person
159 sg:person.0644756637.29 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
160 schema:familyName Yamamoto
161 schema:givenName Takashi
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644756637.29
163 rdf:type schema:Person
164 sg:pub.10.1007/978-3-540-30576-7_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022842274
165 https://doi.org/10.1007/978-3-540-30576-7_21
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/978-3-540-30576-7_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017063403
168 https://doi.org/10.1007/978-3-540-30576-7_22
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/ncomms1348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000848281
171 https://doi.org/10.1038/ncomms1348
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/ncomms1631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024608094
174 https://doi.org/10.1038/ncomms1631
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/ncomms4732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003655525
177 https://doi.org/10.1038/ncomms4732
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nphoton.2010.214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024691832
180 https://doi.org/10.1038/nphoton.2010.214
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nphoton.2014.149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025448691
183 https://doi.org/10.1038/nphoton.2014.149
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/s41467-017-02307-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100657949
186 https://doi.org/10.1038/s41467-017-02307-4
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/s41534-017-0026-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086000675
189 https://doi.org/10.1038/s41534-017-0026-2
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/s41534-017-0057-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100657978
192 https://doi.org/10.1038/s41534-017-0057-8
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.tcs.2014.05.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017306895
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1063/1.5016931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100756210
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1063/1.5027030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109368135
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1088/1367-2630/11/4/045018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059134660
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1088/1367-2630/13/7/073024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033557249
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1088/1367-2630/14/9/093014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003952122
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1088/1367-2630/16/6/063009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027328044
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1088/1367-2630/17/9/093011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059136997
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1088/1751-8113/49/16/165301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059174312
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1088/2058-9565/aa89bd schema:sameAs https://app.dimensions.ai/details/publication/pub.1091466594
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physreva.74.022313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020517169
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physreva.77.042311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008059604
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physreva.78.019905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060504797
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physreva.78.042333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053141464
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physreva.89.022307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016590088
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physreva.90.052314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021801190
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physreva.91.032326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044055221
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physreva.92.022304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060513852
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/physreva.92.032305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014322904
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1103/physreva.93.042308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060515490
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1103/physreva.93.042325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060515504
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1103/physreva.95.012333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083506552
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1103/physreva.96.012305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090537241
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1103/physrevlett.108.130503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018765503
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1103/physrevlett.110.010503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046453513
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1103/physrevlett.113.140501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005675438
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1103/physrevlett.91.057901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025620862
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1103/physrevlett.94.230503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017687775
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1103/physrevlett.94.230504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020143779
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1103/physrevlett.98.230501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052676371
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1109/sfcs.1998.743501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093394554
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1364/oe.15.009388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012020484
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1364/optica.3.001274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065248431
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1364/optica.4.000172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087286484
261 rdf:type schema:CreativeWork
262 https://doi.org/10.22331/q-2017-07-14-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090728166
263 rdf:type schema:CreativeWork
264 https://doi.org/10.2748/tmj/1178243286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070921783
265 rdf:type schema:CreativeWork
266 https://www.grid.ac/institutes/grid.136593.b schema:alternateName Osaka University
267 schema:name Graduate School of Engineering Science, Osaka University, 560-8531, Toyonaka, Osaka, Japan
268 rdf:type schema:Organization
269 https://www.grid.ac/institutes/grid.17063.33 schema:alternateName University of Toronto
270 schema:name Center for Quantum Information and Quantum Control, Department of Physics and Department of Electrical & Computer Engineering, University of Toronto, M5S 3G4, Toronto, Ontario, Canada
271 rdf:type schema:Organization
272 https://www.grid.ac/institutes/grid.267346.2 schema:alternateName University of Toyama
273 schema:name Graduate School of Science and Engineering for Research, University of Toyama, Gofuku 3190, 930-8555, Toyama, Japan
274 NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, 243-0198, Atsugi, Kanagawa, Japan
275 rdf:type schema:Organization
276 https://www.grid.ac/institutes/grid.419819.c schema:alternateName Nippon Telegraph and Telephone (Japan)
277 schema:name NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, 243-0198, Atsugi, Kanagawa, Japan
278 NTT Communication Science Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, 243-0198, Atsugi, Kanagawa, Japan
279 NTT Research Center for Theoretical Quantum Physics, NTT Corporation, 3-1 Morinosato-Wakamiya, 243-0198, Atsugi, Kanagawa, Japan
280 rdf:type schema:Organization
281 https://www.grid.ac/institutes/grid.462605.3 schema:alternateName Mitsubishi Electric (Japan)
282 schema:name Graduate School of Engineering Science, Osaka University, 560-8531, Toyonaka, Osaka, Japan
283 Mitsubishi Electric Corporation, Information Technology R&D Center, 5-1-1 Ofuna, 247-8501, Kamakura-shi, Kanagawa, Japan
284 rdf:type schema:Organization
285 https://www.grid.ac/institutes/grid.6312.6 schema:alternateName University of Vigo
286 schema:name EI Telecomunicación, Department of Signal Theory and Communications, University of Vigo, E-36310, Vigo, Spain
287 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...