Machine learning techniques for state recognition and auto-tuning in quantum dots View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Sandesh S. Kalantre, Justyna P. Zwolak, Stephen Ragole, Xingyao Wu, Neil M. Zimmerman, M. D. Stewart, Jacob M. Taylor

ABSTRACT

Recent progress in building large-scale quantum devices for exploring quantum computing and simulation has relied upon effective tools for achieving and maintaining good experimental parameters, i.e., tuning up devices. In many cases, including quantum dot-based architectures, the parameter space grows substantially with the number of qubits, and may become a limit to scalability. Fortunately, machine learning techniques for pattern recognition and image classification, using so-called deep neural networks, have shown surprising successes for computer-aided understanding of complex systems. We propose a new paradigm for fully automated experimental initialization through a closed-loop system relying on machine learning and optimization techniques. We use deep convolutional neural networks to characterize states and charge configurations of semiconductor quantum dot arrays when only measurements of a current−voltage characteristic of transport are available. For simplicity, we model a semiconductor nanowire connected to leads and capacitively coupled to depletion gates using the Thomas−Fermi approximation and Coulomb blockade physics. We then generate labeled training data for the neural networks, and find at least 90 % accuracy for charge and state identification for single and double dots. Using these characterization networks, we can then optimize the parameter space to achieve a desired configuration of the array, a technique we call “auto-tuning”. Finally, we show how such techniques can be implemented in an experimental setting by applying our approach to an experimental dataset, and outline further problems in this domain, from using charge sensing data to extensions to full one- and two-dimensional arrays, that can be tackled with machine learning. A machine learning algorithm connected to a set of quantum dots can automatically set them into the desired state. A group led by Jake Taylor at the National Institute of Standards and Technology with collaborators from the University of Maryland and India developed an approach based on convolutional neural networks which is able to “navigate” the huge space of parameters that characterize a complex, quantum system with neither human guidance nor reliance on a detailed description of the device. Instead they simulated thousands of hypothetical experiments and used the generated data to “train” the machine, which learned both to infer the internal charge state of the dots from their current-voltage characteristics, and to auto-tune them to a desired state. The method could be generalized to other platforms, such as ion traps or superconducting qubits. More... »

PAGES

6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41534-018-0118-7

DOI

http://dx.doi.org/10.1038/s41534-018-0118-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111418050


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Department of Physics, Indian Institute of Technology\u2014Bombay, 400076, Mumbai, India", 
            "Joint Center for Quantum Information and Computer Science, University of Maryland, 20742, College Park, MD, USA", 
            "National Institute of Standards and Technology, 20899, Gaithersburg, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalantre", 
        "givenName": "Sandesh S.", 
        "id": "sg:person.014242531453.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014242531453.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Joint Center for Quantum Information and Computer Science, University of Maryland, 20742, College Park, MD, USA", 
            "National Institute of Standards and Technology, 20899, Gaithersburg, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zwolak", 
        "givenName": "Justyna P.", 
        "id": "sg:person.014265362317.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014265362317.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Joint Center for Quantum Information and Computer Science, University of Maryland, 20742, College Park, MD, USA", 
            "Joint Quantum Institute, University of Maryland, 20742, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ragole", 
        "givenName": "Stephen", 
        "id": "sg:person.016502547375.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016502547375.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Joint Center for Quantum Information and Computer Science, University of Maryland, 20742, College Park, MD, USA", 
            "Joint Quantum Institute, University of Maryland, 20742, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Xingyao", 
        "id": "sg:person.015040112053.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015040112053.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "National Institute of Standards and Technology, 20899, Gaithersburg, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zimmerman", 
        "givenName": "Neil M.", 
        "id": "sg:person.01227561414.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227561414.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "National Institute of Standards and Technology, 20899, Gaithersburg, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stewart", 
        "givenName": "M. D.", 
        "id": "sg:person.01055327671.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055327671.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Joint Center for Quantum Information and Computer Science, University of Maryland, 20742, College Park, MD, USA", 
            "National Institute of Standards and Technology, 20899, Gaithersburg, MD, USA", 
            "Joint Quantum Institute, University of Maryland, 20742, College Park, MD, USA", 
            "Research Center for Advanced Science and Technology, University of Tokyo, 153-8904, Meguro-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taylor", 
        "givenName": "Jacob M.", 
        "id": "sg:person.01301577127.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301577127.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/1367-2630/16/7/075007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004233746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010020120", 
          "https://doi.org/10.1038/nature14539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.062320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010131608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.062320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010131608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/npjqi.2016.34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022385877", 
          "https://doi.org/10.1038/npjqi.2016.34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/10/4/045007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022943509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4875909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026990731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.110402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030879158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.110402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030879158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.75.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032925420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.75.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032925420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4952624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043859548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/15/2/023001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053138869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0962492900002841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054905202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1650036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057729963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/49/20/202001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059113576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevapplied.6.054013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060517970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevapplied.6.054013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060517970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.726791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ted.2012.2227322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061595274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41534-016-0003-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083821376", 
          "https://doi.org/10.1038/s41534-016-0003-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3065386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085642448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3065386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085642448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.235305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090149438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.235305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090149438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.045443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091001718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.045443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091001718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-00378-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091456732", 
          "https://doi.org/10.1038/s41467-017-00378-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-01905-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092832026", 
          "https://doi.org/10.1038/s41467-017-01905-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature24622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093061285", 
          "https://doi.org/10.1038/nature24622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature24622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093061285", 
          "https://doi.org/10.1038/nature24622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icrc.2016.7738703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094201221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7298594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094291017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.7.041061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099663272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.7.041061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099663272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature25766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101019938", 
          "https://doi.org/10.1038/nature25766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature25766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101019938", 
          "https://doi.org/10.1038/nature25766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aao4309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103239601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.8.021058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104353036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.8.021058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104353036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.aar3960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105341414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-06039-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107670522", 
          "https://doi.org/10.1038/s41467-018-06039-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Recent progress in building large-scale quantum devices for exploring quantum computing and simulation has relied upon effective tools for achieving and maintaining good experimental parameters, i.e., tuning up devices. In many cases, including quantum dot-based architectures, the parameter space grows substantially with the number of qubits, and may become a limit to scalability. Fortunately, machine learning techniques for pattern recognition and image classification, using so-called deep neural networks, have shown surprising successes for computer-aided understanding of complex systems. We propose a new paradigm for fully automated experimental initialization through a closed-loop system relying on machine learning and optimization techniques. We use deep convolutional neural networks to characterize states and charge configurations of semiconductor quantum dot arrays when only measurements of a current\u2212voltage characteristic of transport are available. For simplicity, we model a semiconductor nanowire connected to leads and capacitively coupled to depletion gates using the Thomas\u2212Fermi approximation and Coulomb blockade physics. We then generate labeled training data for the neural networks, and find at least 90 % accuracy for charge and state identification for single and double dots. Using these characterization networks, we can then optimize the parameter space to achieve a desired configuration of the array, a technique we call \u201cauto-tuning\u201d. Finally, we show how such techniques can be implemented in an experimental setting by applying our approach to an experimental dataset, and outline further problems in this domain, from using charge sensing data to extensions to full one- and two-dimensional arrays, that can be tackled with machine learning. A machine learning algorithm connected to a set of quantum dots can automatically set them into the desired state. A group led by Jake Taylor at the National Institute of Standards and Technology with collaborators from the University of Maryland and India developed an approach based on convolutional neural networks which is able to \u201cnavigate\u201d the huge space of parameters that characterize a complex, quantum system with neither human guidance nor reliance on a detailed description of the device. Instead they simulated thousands of hypothetical experiments and used the generated data to \u201ctrain\u201d the machine, which learned both to infer the internal charge state of the dots from their current-voltage characteristics, and to auto-tune them to a desired state. The method could be generalized to other platforms, such as ion traps or superconducting qubits.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41534-018-0118-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1285192", 
        "issn": [
          "2056-6387"
        ], 
        "name": "npj Quantum Information", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Machine learning techniques for state recognition and auto-tuning in quantum dots", 
    "pagination": "6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "44295766d04672ec940e251baf771bc2b46defdf31d62641977becf6610f85a7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41534-018-0118-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111418050"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41534-018-0118-7", 
      "https://app.dimensions.ai/details/publication/pub.1111418050"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000322_0000000322/records_65024_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41534-018-0118-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41534-018-0118-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41534-018-0118-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41534-018-0118-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41534-018-0118-7'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41534-018-0118-7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0711f78588c64d7299c3f1b7a7c44969
4 schema:citation sg:pub.10.1038/nature14539
5 sg:pub.10.1038/nature24622
6 sg:pub.10.1038/nature25766
7 sg:pub.10.1038/npjqi.2016.34
8 sg:pub.10.1038/s41467-017-00378-x
9 sg:pub.10.1038/s41467-017-01905-6
10 sg:pub.10.1038/s41467-018-06039-x
11 sg:pub.10.1038/s41534-016-0003-1
12 https://doi.org/10.1017/s0962492900002841
13 https://doi.org/10.1063/1.1650036
14 https://doi.org/10.1063/1.4875909
15 https://doi.org/10.1063/1.4952624
16 https://doi.org/10.1088/0953-4075/49/20/202001
17 https://doi.org/10.1088/1367-2630/10/4/045007
18 https://doi.org/10.1088/1367-2630/15/2/023001
19 https://doi.org/10.1088/1367-2630/16/7/075007
20 https://doi.org/10.1103/physreva.69.062320
21 https://doi.org/10.1103/physrevapplied.6.054013
22 https://doi.org/10.1103/physrevb.95.235305
23 https://doi.org/10.1103/physrevb.96.045443
24 https://doi.org/10.1103/physrevlett.116.110402
25 https://doi.org/10.1103/physrevx.7.041061
26 https://doi.org/10.1103/physrevx.8.021058
27 https://doi.org/10.1103/revmodphys.75.1
28 https://doi.org/10.1109/5.726791
29 https://doi.org/10.1109/cvpr.2015.7298594
30 https://doi.org/10.1109/icrc.2016.7738703
31 https://doi.org/10.1109/ted.2012.2227322
32 https://doi.org/10.1126/sciadv.aar3960
33 https://doi.org/10.1126/science.aao4309
34 https://doi.org/10.1145/3065386
35 schema:datePublished 2019-12
36 schema:datePublishedReg 2019-12-01
37 schema:description Recent progress in building large-scale quantum devices for exploring quantum computing and simulation has relied upon effective tools for achieving and maintaining good experimental parameters, i.e., tuning up devices. In many cases, including quantum dot-based architectures, the parameter space grows substantially with the number of qubits, and may become a limit to scalability. Fortunately, machine learning techniques for pattern recognition and image classification, using so-called deep neural networks, have shown surprising successes for computer-aided understanding of complex systems. We propose a new paradigm for fully automated experimental initialization through a closed-loop system relying on machine learning and optimization techniques. We use deep convolutional neural networks to characterize states and charge configurations of semiconductor quantum dot arrays when only measurements of a current−voltage characteristic of transport are available. For simplicity, we model a semiconductor nanowire connected to leads and capacitively coupled to depletion gates using the Thomas−Fermi approximation and Coulomb blockade physics. We then generate labeled training data for the neural networks, and find at least 90 % accuracy for charge and state identification for single and double dots. Using these characterization networks, we can then optimize the parameter space to achieve a desired configuration of the array, a technique we call “auto-tuning”. Finally, we show how such techniques can be implemented in an experimental setting by applying our approach to an experimental dataset, and outline further problems in this domain, from using charge sensing data to extensions to full one- and two-dimensional arrays, that can be tackled with machine learning. A machine learning algorithm connected to a set of quantum dots can automatically set them into the desired state. A group led by Jake Taylor at the National Institute of Standards and Technology with collaborators from the University of Maryland and India developed an approach based on convolutional neural networks which is able to “navigate” the huge space of parameters that characterize a complex, quantum system with neither human guidance nor reliance on a detailed description of the device. Instead they simulated thousands of hypothetical experiments and used the generated data to “train” the machine, which learned both to infer the internal charge state of the dots from their current-voltage characteristics, and to auto-tune them to a desired state. The method could be generalized to other platforms, such as ion traps or superconducting qubits.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N0ddc16aa29a1498cb156e91cea71e3bc
42 Neb9b51fb3a114bf08bdaaea5b058a9d3
43 sg:journal.1285192
44 schema:name Machine learning techniques for state recognition and auto-tuning in quantum dots
45 schema:pagination 6
46 schema:productId N5a8b80cb6dcb4bdf9257c9ab9ed7ea33
47 N671814b0e0134662af4a41c4045d98f4
48 N89633680b8ba43ee8380628e488a3f3f
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111418050
50 https://doi.org/10.1038/s41534-018-0118-7
51 schema:sdDatePublished 2019-04-11T08:43
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N6a5f31139bbb411980b201e44c86d984
54 schema:url https://www.nature.com/articles/s41534-018-0118-7
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N0711f78588c64d7299c3f1b7a7c44969 rdf:first sg:person.014242531453.91
59 rdf:rest Nb921fecb94984e14a297427b1879cd05
60 N0ddc16aa29a1498cb156e91cea71e3bc schema:issueNumber 1
61 rdf:type schema:PublicationIssue
62 N16057ab07ed24c799c58f9522cbf129f rdf:first sg:person.016502547375.38
63 rdf:rest Nd83834a26631481ba986ba521e6d3cf8
64 N2399f145ba4648239c2f0bac5875fbad rdf:first sg:person.01301577127.54
65 rdf:rest rdf:nil
66 N4d155ae1afc94ac4bdd1e32740cb8a29 rdf:first sg:person.01227561414.06
67 rdf:rest N87002b42480a40a8885bd7f367e34a9e
68 N5a8b80cb6dcb4bdf9257c9ab9ed7ea33 schema:name doi
69 schema:value 10.1038/s41534-018-0118-7
70 rdf:type schema:PropertyValue
71 N671814b0e0134662af4a41c4045d98f4 schema:name readcube_id
72 schema:value 44295766d04672ec940e251baf771bc2b46defdf31d62641977becf6610f85a7
73 rdf:type schema:PropertyValue
74 N6a5f31139bbb411980b201e44c86d984 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N87002b42480a40a8885bd7f367e34a9e rdf:first sg:person.01055327671.66
77 rdf:rest N2399f145ba4648239c2f0bac5875fbad
78 N89633680b8ba43ee8380628e488a3f3f schema:name dimensions_id
79 schema:value pub.1111418050
80 rdf:type schema:PropertyValue
81 Nb921fecb94984e14a297427b1879cd05 rdf:first sg:person.014265362317.49
82 rdf:rest N16057ab07ed24c799c58f9522cbf129f
83 Nd83834a26631481ba986ba521e6d3cf8 rdf:first sg:person.015040112053.76
84 rdf:rest N4d155ae1afc94ac4bdd1e32740cb8a29
85 Neb9b51fb3a114bf08bdaaea5b058a9d3 schema:volumeNumber 5
86 rdf:type schema:PublicationVolume
87 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
88 schema:name Information and Computing Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
91 schema:name Artificial Intelligence and Image Processing
92 rdf:type schema:DefinedTerm
93 sg:journal.1285192 schema:issn 2056-6387
94 schema:name npj Quantum Information
95 rdf:type schema:Periodical
96 sg:person.01055327671.66 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
97 schema:familyName Stewart
98 schema:givenName M. D.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055327671.66
100 rdf:type schema:Person
101 sg:person.01227561414.06 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
102 schema:familyName Zimmerman
103 schema:givenName Neil M.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227561414.06
105 rdf:type schema:Person
106 sg:person.01301577127.54 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
107 schema:familyName Taylor
108 schema:givenName Jacob M.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301577127.54
110 rdf:type schema:Person
111 sg:person.014242531453.91 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
112 schema:familyName Kalantre
113 schema:givenName Sandesh S.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014242531453.91
115 rdf:type schema:Person
116 sg:person.014265362317.49 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
117 schema:familyName Zwolak
118 schema:givenName Justyna P.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014265362317.49
120 rdf:type schema:Person
121 sg:person.015040112053.76 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
122 schema:familyName Wu
123 schema:givenName Xingyao
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015040112053.76
125 rdf:type schema:Person
126 sg:person.016502547375.38 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
127 schema:familyName Ragole
128 schema:givenName Stephen
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016502547375.38
130 rdf:type schema:Person
131 sg:pub.10.1038/nature14539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020120
132 https://doi.org/10.1038/nature14539
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/nature24622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093061285
135 https://doi.org/10.1038/nature24622
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nature25766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101019938
138 https://doi.org/10.1038/nature25766
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/npjqi.2016.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022385877
141 https://doi.org/10.1038/npjqi.2016.34
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/s41467-017-00378-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1091456732
144 https://doi.org/10.1038/s41467-017-00378-x
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/s41467-017-01905-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092832026
147 https://doi.org/10.1038/s41467-017-01905-6
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/s41467-018-06039-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1107670522
150 https://doi.org/10.1038/s41467-018-06039-x
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/s41534-016-0003-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083821376
153 https://doi.org/10.1038/s41534-016-0003-1
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1017/s0962492900002841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054905202
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1063/1.1650036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057729963
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1063/1.4875909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026990731
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1063/1.4952624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043859548
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1088/0953-4075/49/20/202001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059113576
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1088/1367-2630/10/4/045007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022943509
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1088/1367-2630/15/2/023001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053138869
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1088/1367-2630/16/7/075007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004233746
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physreva.69.062320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010131608
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevapplied.6.054013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060517970
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevb.95.235305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090149438
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevb.96.045443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091001718
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.116.110402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030879158
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevx.7.041061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099663272
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevx.8.021058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104353036
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/revmodphys.75.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032925420
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/5.726791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179979
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/cvpr.2015.7298594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094291017
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/icrc.2016.7738703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094201221
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/ted.2012.2227322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061595274
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1126/sciadv.aar3960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105341414
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1126/science.aao4309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103239601
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1145/3065386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085642448
200 rdf:type schema:CreativeWork
201 https://www.grid.ac/institutes/grid.164295.d schema:alternateName University of Maryland, College Park
202 schema:name Joint Center for Quantum Information and Computer Science, University of Maryland, 20742, College Park, MD, USA
203 Joint Quantum Institute, University of Maryland, 20742, College Park, MD, USA
204 rdf:type schema:Organization
205 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
206 schema:name Joint Center for Quantum Information and Computer Science, University of Maryland, 20742, College Park, MD, USA
207 Joint Quantum Institute, University of Maryland, 20742, College Park, MD, USA
208 National Institute of Standards and Technology, 20899, Gaithersburg, MD, USA
209 Research Center for Advanced Science and Technology, University of Tokyo, 153-8904, Meguro-ku, Tokyo, Japan
210 rdf:type schema:Organization
211 https://www.grid.ac/institutes/grid.94225.38 schema:alternateName National Institute of Standards and Technology
212 schema:name Department of Physics, Indian Institute of Technology—Bombay, 400076, Mumbai, India
213 Joint Center for Quantum Information and Computer Science, University of Maryland, 20742, College Park, MD, USA
214 National Institute of Standards and Technology, 20899, Gaithersburg, MD, USA
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...