Remote quantum clock synchronization without synchronized clocks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Ebubechukwu O. Ilo-Okeke, Louis Tessler, Jonathan P. Dowling, Tim Byrnes

ABSTRACT

A major outstanding problem for many quantum clock synchronization protocols is the hidden assumption of a common phase reference between the parties to be synchronized. In general, the definition of the quantum states between two parties do not have consistent phase definitions, which can lead to an unknown systematic error. We show that despite prior arguments to the contrary, it is possible to remove this unknown phase via entanglement purification. This closes the loophole for entanglement based quantum clock synchronization protocols, which is a non-local approach to synchronize two clocks independent of the properties of the intervening medium. Starting with noisy Bell pairs, we show that the scheme produces a singlet state for any combination of (i) differing basis conventions for Alice and Bob; (ii) an overall time offset in the execution of the purification algorithm; and (iii) the presence of a noisy channel. Error estimates reveal that better performance than existing classical Einstein synchronization protocols should be achievable using current technology. Quantum mechanics can be used to synchronise the clocks of two distant parties by using the non-local properties of entanglement. It was shown in 2000 that, if two parties share entangled qubit pairs, performing coordinated quantum operations allows them to detect systematic errors in their measurements of time. Unfortunately, performing the correct manipulations already implicitly requires some degree of synchronisation. Ebubechukwu Ilo-Okeke and colleagues from New York University Shanghai and Louisiana State University show that this can be resolved using quantum purification, which concentrates the entanglement from many qubits into states with higher entanglement. They demonstrate that when the parties are out of sync the purification generates states that account for the discrepancy and then can be used for synchronisation. If fully developed, the quantum synchronization scheme could outperform existing classical methods. More... »

PAGES

40

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41534-018-0090-2

DOI

http://dx.doi.org/10.1038/s41534-018-0090-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106088111


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Federal University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.411257.4", 
          "name": [
            "State Key Laboratory of Precision Spectroscopy, School of Physical and Material Sciences, East China Normal University, 200062, Shanghai, China", 
            "New York University Shanghai, 1555 Century Ave, 200122, Pudong, Shanghai, China", 
            "Department of Physics, School of Physical Sciences, Federal University of Technology, P. M. B. 1526, 460001, Owerri, Nigeria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ilo-Okeke", 
        "givenName": "Ebubechukwu O.", 
        "id": "sg:person.01032431446.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032431446.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University Shanghai", 
          "id": "https://www.grid.ac/institutes/grid.449457.f", 
          "name": [
            "New York University Shanghai, 1555 Century Ave, 200122, Pudong, Shanghai, China", 
            "RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, 351-0106, Wako-Shi, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tessler", 
        "givenName": "Louis", 
        "id": "sg:person.016516107204.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016516107204.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Science and Technology of China", 
          "id": "https://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "NYU-ECNU Institute of Physics at NYU Shanghai, 3663 Zhongshan Road North, 200062, Shanghai, China", 
            "Hearne Institute for Theoretical Physics, Department of Physics & Astronomy, Louisiana State University, 70803-4001, Baton Rouge, Louisiana, USA", 
            "CAS-Alibaba Quantum Computing Laboratory, University of Science and Technology of China, 201315, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dowling", 
        "givenName": "Jonathan P.", 
        "id": "sg:person.07724164277.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07724164277.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "State Key Laboratory of Precision Spectroscopy, School of Physical and Material Sciences, East China Normal University, 200062, Shanghai, China", 
            "New York University Shanghai, 1555 Century Ave, 200122, Pudong, Shanghai, China", 
            "NYU-ECNU Institute of Physics at NYU Shanghai, 3663 Zhongshan Road North, 200062, Shanghai, China", 
            "National Institute of Informatics, 2-1-2 Hitotsubashi, 101-8430, Chiyoda-ku, Tokyo, Japan", 
            "Department of Physics, New York University, 10003, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Byrnes", 
        "givenName": "Tim", 
        "id": "sg:person.01204520773.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204520773.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/andp.19053221004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001724028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.117902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009321227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.117902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009321227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.66.024305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011558753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.66.024305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011558753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11433-016-0185-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013869727", 
          "https://doi.org/10.1007/s11433-016-0185-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11433-016-0185-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013869727", 
          "https://doi.org/10.1007/s11433-016-0185-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015629185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015629185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.65.052317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016925849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.65.052317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016925849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1797561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021066985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.54.3824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022782738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.54.3824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022782738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.adhoc.2005.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024172737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024421624", 
          "https://doi.org/10.1038/nphys3000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030767612", 
          "https://doi.org/10.1038/nphoton.2010.30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep07982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031914650", 
          "https://doi.org/10.1038/srep07982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034648761", 
          "https://doi.org/10.1038/nphys1773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/ars-9-1-2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041951206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep30453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042091809", 
          "https://doi.org/10.1038/srep30453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043090999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043090999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.014301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043202879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.014301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043202879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.062322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045343398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.062322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045343398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.042301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047149732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.042301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047149732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048714555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048714555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35086525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048825170", 
          "https://doi.org/10.1038/35086525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35086525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048825170", 
          "https://doi.org/10.1038/35086525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.84.014301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051831444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.84.014301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051831444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0026-1394/52/2/423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058980940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.129801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.129801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.129802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.129802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.87.637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.87.637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218271808012681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062968565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/9780470546352.ch2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086109979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aan3211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086128588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/freq.1980.200424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086183276"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "A major outstanding problem for many quantum clock synchronization protocols is the hidden assumption of a common phase reference between the parties to be synchronized. In general, the definition of the quantum states between two parties do not have consistent phase definitions, which can lead to an unknown systematic error. We show that despite prior arguments to the contrary, it is possible to remove this unknown phase via entanglement purification. This closes the loophole for entanglement based quantum clock synchronization protocols, which is a non-local approach to synchronize two clocks independent of the properties of the intervening medium. Starting with noisy Bell pairs, we show that the scheme produces a singlet state for any combination of (i) differing basis conventions for Alice and Bob; (ii) an overall time offset in the execution of the purification algorithm; and (iii) the presence of a noisy channel. Error estimates reveal that better performance than existing classical Einstein synchronization protocols should be achievable using current technology. Quantum mechanics can be used to synchronise the clocks of two distant parties by using the non-local properties of entanglement. It was shown in 2000 that, if two parties share entangled qubit pairs, performing coordinated quantum operations allows them to detect systematic errors in their measurements of time. Unfortunately, performing the correct manipulations already implicitly requires some degree of synchronisation. Ebubechukwu Ilo-Okeke and colleagues from New York University Shanghai and Louisiana State University show that this can be resolved using quantum purification, which concentrates the entanglement from many qubits into states with higher entanglement. They demonstrate that when the parties are out of sync the purification generates states that account for the discrepancy and then can be used for synchronisation. If fully developed, the quantum synchronization scheme could outperform existing classical methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41534-018-0090-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1285192", 
        "issn": [
          "2056-6387"
        ], 
        "name": "npj Quantum Information", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Remote quantum clock synchronization without synchronized clocks", 
    "pagination": "40", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dea0c1dee77cb80e10982baf3bed8c2fefae0abaa1a1f4d1e6b1fbe7ec24b32c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41534-018-0090-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106088111"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41534-018-0090-2", 
      "https://app.dimensions.ai/details/publication/pub.1106088111"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41534-018-0090-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41534-018-0090-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41534-018-0090-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41534-018-0090-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41534-018-0090-2'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41534-018-0090-2 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Naf7f08f07af74a7bafb037fad678d656
4 schema:citation sg:pub.10.1007/s11433-016-0185-6
5 sg:pub.10.1038/35086525
6 sg:pub.10.1038/nphoton.2010.30
7 sg:pub.10.1038/nphys1773
8 sg:pub.10.1038/nphys3000
9 sg:pub.10.1038/srep07982
10 sg:pub.10.1038/srep30453
11 https://doi.org/10.1002/andp.19053221004
12 https://doi.org/10.1016/j.adhoc.2005.01.002
13 https://doi.org/10.1063/1.1797561
14 https://doi.org/10.1088/0026-1394/52/2/423
15 https://doi.org/10.1103/physreva.54.3824
16 https://doi.org/10.1103/physreva.65.052317
17 https://doi.org/10.1103/physreva.66.024305
18 https://doi.org/10.1103/physreva.70.062322
19 https://doi.org/10.1103/physreva.72.042301
20 https://doi.org/10.1103/physreva.84.014301
21 https://doi.org/10.1103/physreva.86.014301
22 https://doi.org/10.1103/physrevlett.76.722
23 https://doi.org/10.1103/physrevlett.85.2006
24 https://doi.org/10.1103/physrevlett.85.2010
25 https://doi.org/10.1103/physrevlett.87.117902
26 https://doi.org/10.1103/physrevlett.87.129801
27 https://doi.org/10.1103/physrevlett.87.129802
28 https://doi.org/10.1103/revmodphys.87.637
29 https://doi.org/10.1109/9780470546352.ch2
30 https://doi.org/10.1109/freq.1980.200424
31 https://doi.org/10.1126/science.aan3211
32 https://doi.org/10.1142/s0218271808012681
33 https://doi.org/10.5194/ars-9-1-2011
34 schema:datePublished 2018-12
35 schema:datePublishedReg 2018-12-01
36 schema:description A major outstanding problem for many quantum clock synchronization protocols is the hidden assumption of a common phase reference between the parties to be synchronized. In general, the definition of the quantum states between two parties do not have consistent phase definitions, which can lead to an unknown systematic error. We show that despite prior arguments to the contrary, it is possible to remove this unknown phase via entanglement purification. This closes the loophole for entanglement based quantum clock synchronization protocols, which is a non-local approach to synchronize two clocks independent of the properties of the intervening medium. Starting with noisy Bell pairs, we show that the scheme produces a singlet state for any combination of (i) differing basis conventions for Alice and Bob; (ii) an overall time offset in the execution of the purification algorithm; and (iii) the presence of a noisy channel. Error estimates reveal that better performance than existing classical Einstein synchronization protocols should be achievable using current technology. Quantum mechanics can be used to synchronise the clocks of two distant parties by using the non-local properties of entanglement. It was shown in 2000 that, if two parties share entangled qubit pairs, performing coordinated quantum operations allows them to detect systematic errors in their measurements of time. Unfortunately, performing the correct manipulations already implicitly requires some degree of synchronisation. Ebubechukwu Ilo-Okeke and colleagues from New York University Shanghai and Louisiana State University show that this can be resolved using quantum purification, which concentrates the entanglement from many qubits into states with higher entanglement. They demonstrate that when the parties are out of sync the purification generates states that account for the discrepancy and then can be used for synchronisation. If fully developed, the quantum synchronization scheme could outperform existing classical methods.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf Na4f9263273ca4a44b2940c157c04a769
41 Nc54f180ec3e142fa826f168e27498781
42 sg:journal.1285192
43 schema:name Remote quantum clock synchronization without synchronized clocks
44 schema:pagination 40
45 schema:productId N07368ff8174549109d94eca93aa92976
46 N54eab89035c14c74abdf33f126f9d2c8
47 N5a43ddf0907540debccb59110a0a8c21
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106088111
49 https://doi.org/10.1038/s41534-018-0090-2
50 schema:sdDatePublished 2019-04-10T14:05
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N7d1543acd0c843be81db6a1de6e0a115
53 schema:url https://www.nature.com/articles/s41534-018-0090-2
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N07368ff8174549109d94eca93aa92976 schema:name doi
58 schema:value 10.1038/s41534-018-0090-2
59 rdf:type schema:PropertyValue
60 N54eab89035c14c74abdf33f126f9d2c8 schema:name dimensions_id
61 schema:value pub.1106088111
62 rdf:type schema:PropertyValue
63 N5a43ddf0907540debccb59110a0a8c21 schema:name readcube_id
64 schema:value dea0c1dee77cb80e10982baf3bed8c2fefae0abaa1a1f4d1e6b1fbe7ec24b32c
65 rdf:type schema:PropertyValue
66 N5ea5b911c5434ac4b4543c398c733fcb rdf:first sg:person.07724164277.22
67 rdf:rest Nd0a9b89ecea749e988b74888f06484a8
68 N7d1543acd0c843be81db6a1de6e0a115 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N81f67d2f7fe74c91b91389aefdbd41c8 rdf:first sg:person.016516107204.29
71 rdf:rest N5ea5b911c5434ac4b4543c398c733fcb
72 Na4f9263273ca4a44b2940c157c04a769 schema:volumeNumber 4
73 rdf:type schema:PublicationVolume
74 Naf7f08f07af74a7bafb037fad678d656 rdf:first sg:person.01032431446.19
75 rdf:rest N81f67d2f7fe74c91b91389aefdbd41c8
76 Nc54f180ec3e142fa826f168e27498781 schema:issueNumber 1
77 rdf:type schema:PublicationIssue
78 Nd0a9b89ecea749e988b74888f06484a8 rdf:first sg:person.01204520773.71
79 rdf:rest rdf:nil
80 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
81 schema:name Physical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
84 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
85 rdf:type schema:DefinedTerm
86 sg:journal.1285192 schema:issn 2056-6387
87 schema:name npj Quantum Information
88 rdf:type schema:Periodical
89 sg:person.01032431446.19 schema:affiliation https://www.grid.ac/institutes/grid.411257.4
90 schema:familyName Ilo-Okeke
91 schema:givenName Ebubechukwu O.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032431446.19
93 rdf:type schema:Person
94 sg:person.01204520773.71 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
95 schema:familyName Byrnes
96 schema:givenName Tim
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204520773.71
98 rdf:type schema:Person
99 sg:person.016516107204.29 schema:affiliation https://www.grid.ac/institutes/grid.449457.f
100 schema:familyName Tessler
101 schema:givenName Louis
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016516107204.29
103 rdf:type schema:Person
104 sg:person.07724164277.22 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
105 schema:familyName Dowling
106 schema:givenName Jonathan P.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07724164277.22
108 rdf:type schema:Person
109 sg:pub.10.1007/s11433-016-0185-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013869727
110 https://doi.org/10.1007/s11433-016-0185-6
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/35086525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048825170
113 https://doi.org/10.1038/35086525
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/nphoton.2010.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030767612
116 https://doi.org/10.1038/nphoton.2010.30
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/nphys1773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034648761
119 https://doi.org/10.1038/nphys1773
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nphys3000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024421624
122 https://doi.org/10.1038/nphys3000
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/srep07982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031914650
125 https://doi.org/10.1038/srep07982
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/srep30453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042091809
128 https://doi.org/10.1038/srep30453
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/andp.19053221004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001724028
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.adhoc.2005.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024172737
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1063/1.1797561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021066985
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1088/0026-1394/52/2/423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058980940
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physreva.54.3824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022782738
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physreva.65.052317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016925849
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physreva.66.024305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011558753
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physreva.70.062322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045343398
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physreva.72.042301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047149732
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physreva.84.014301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051831444
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physreva.86.014301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043202879
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevlett.76.722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048714555
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrevlett.85.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015629185
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrevlett.85.2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043090999
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevlett.87.117902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009321227
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevlett.87.129801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060823725
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevlett.87.129802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060823726
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/revmodphys.87.637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839786
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/9780470546352.ch2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086109979
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/freq.1980.200424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086183276
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1126/science.aan3211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086128588
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1142/s0218271808012681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062968565
173 rdf:type schema:CreativeWork
174 https://doi.org/10.5194/ars-9-1-2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041951206
175 rdf:type schema:CreativeWork
176 https://www.grid.ac/institutes/grid.137628.9 schema:alternateName New York University
177 schema:name Department of Physics, New York University, 10003, New York, NY, USA
178 NYU-ECNU Institute of Physics at NYU Shanghai, 3663 Zhongshan Road North, 200062, Shanghai, China
179 National Institute of Informatics, 2-1-2 Hitotsubashi, 101-8430, Chiyoda-ku, Tokyo, Japan
180 New York University Shanghai, 1555 Century Ave, 200122, Pudong, Shanghai, China
181 State Key Laboratory of Precision Spectroscopy, School of Physical and Material Sciences, East China Normal University, 200062, Shanghai, China
182 rdf:type schema:Organization
183 https://www.grid.ac/institutes/grid.411257.4 schema:alternateName Federal University of Technology
184 schema:name Department of Physics, School of Physical Sciences, Federal University of Technology, P. M. B. 1526, 460001, Owerri, Nigeria
185 New York University Shanghai, 1555 Century Ave, 200122, Pudong, Shanghai, China
186 State Key Laboratory of Precision Spectroscopy, School of Physical and Material Sciences, East China Normal University, 200062, Shanghai, China
187 rdf:type schema:Organization
188 https://www.grid.ac/institutes/grid.449457.f schema:alternateName New York University Shanghai
189 schema:name New York University Shanghai, 1555 Century Ave, 200122, Pudong, Shanghai, China
190 RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, 351-0106, Wako-Shi, Saitama, Japan
191 rdf:type schema:Organization
192 https://www.grid.ac/institutes/grid.59053.3a schema:alternateName University of Science and Technology of China
193 schema:name CAS-Alibaba Quantum Computing Laboratory, University of Science and Technology of China, 201315, Shanghai, China
194 Hearne Institute for Theoretical Physics, Department of Physics & Astronomy, Louisiana State University, 70803-4001, Baton Rouge, Louisiana, USA
195 NYU-ECNU Institute of Physics at NYU Shanghai, 3663 Zhongshan Road North, 200062, Shanghai, China
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...