Enhancing quantum control by bootstrapping a quantum processor of 12 qubits View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Dawei Lu, Keren Li, Jun Li, Hemant Katiyar, Annie Jihyun Park, Guanru Feng, Tao Xin, Hang Li, Guilu Long, Aharon Brodutch, Jonathan Baugh, Bei Zeng, Raymond Laflamme

ABSTRACT

Accurate and efficient control of quantum systems is one of the central challenges for quantum information processing. Current state-of-the-art experiments rarely go beyond 10 qubits and in most cases demonstrate only limited control. Here we demonstrate control of a 12-qubit system, and show that the system can be employed as a quantum processor to optimize its own control sequence by using measurement-based feedback control (MQFC). The final product is a control sequence for a complex 12-qubit task: preparation of a 12-coherent state. The control sequence is about 10% more accurate than the one generated by the standard (classical) technique, showing that MQFC can correct for unknown imperfections. Apart from demonstrating a high level of control over a relatively large system, our results show that even at the 12-qubit level, a quantum processor can be a useful lab instrument. As an extension of our work, we propose a method for combining the MQFC technique with a twirling protocol, to optimize the control sequence that produces a desired Clifford gate. Realizing high accuracy control of quantum systems represents a crucial ingredient in building large-scaled quantum computers. An international team of researchers led by Raymond Laflamme at Canada’s Institute for Quantum Computing has succeeded in manipulating a 12-qubit nuclear magnetic resonance quantum processor with unprecedented precision. The researchers build a closed-loop pulse auto-tunning setup which employs the controlled system itself to optimize its own pulses. This gives to the benefits of more efficient pulse optimization and more robustness to system uncertainties. Because that the experiment achieves high level of individual controls over all of the qubits, it is at the cutting edge of experimental quantum computing. The experimental techniques are ready to be transferred to other quantum technologies, such as nitrogen-vacancy centers, trapped ions or superconducting circuits. More... »

PAGES

45

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41534-017-0045-z

DOI

http://dx.doi.org/10.1038/s41534-017-0045-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092261970


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Physics, Southern University of Science and Technology, 518055, Shenzhen, China", 
            "Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Dawei", 
        "id": "sg:person.0756746361.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756746361.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, N2L 3G1, Waterloo, ON, Canada", 
            "State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Keren", 
        "id": "sg:person.016606361557.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016606361557.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Computational Science Research Center", 
          "id": "https://www.grid.ac/institutes/grid.410743.5", 
          "name": [
            "Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, N2L 3G1, Waterloo, ON, Canada", 
            "Beijing Computational Science Research Center, 100193, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jun", 
        "id": "sg:person.013371372224.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013371372224.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Katiyar", 
        "givenName": "Hemant", 
        "id": "sg:person.016367452315.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016367452315.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Society", 
          "id": "https://www.grid.ac/institutes/grid.4372.2", 
          "name": [
            "Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, N2L 3G1, Waterloo, ON, Canada", 
            "Max-Planck-Institutf\u00fcr Quantenoptik, D-85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Annie Jihyun", 
        "id": "sg:person.011311427033.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011311427033.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "Guanru", 
        "id": "sg:person.01043605407.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043605407.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, N2L 3G1, Waterloo, ON, Canada", 
            "State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xin", 
        "givenName": "Tao", 
        "id": "sg:person.016667237271.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016667237271.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, N2L 3G1, Waterloo, ON, Canada", 
            "State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Hang", 
        "id": "sg:person.01025061561.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025061561.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Long", 
        "givenName": "Guilu", 
        "id": "sg:person.0704065453.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704065453.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, N2L 3G1, Waterloo, ON, Canada", 
            "Department of Physics and Department of Electrical and Computer Engineering, Center for Quantum Information and Quantum Control, University of Toronto, M5S 3H6, Toronto, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brodutch", 
        "givenName": "Aharon", 
        "id": "sg:person.01201061772.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201061772.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baugh", 
        "givenName": "Jonathan", 
        "id": "sg:person.01060076667.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060076667.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Guelph", 
          "id": "https://www.grid.ac/institutes/grid.34429.38", 
          "name": [
            "Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, N2L 3G1, Waterloo, ON, Canada", 
            "Department of Mathematics and Statistics, University of Guelph, N1G 2W1, Guelph, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zeng", 
        "givenName": "Bei", 
        "id": "sg:person.0667360406.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667360406.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Perimeter Institute", 
          "id": "https://www.grid.ac/institutes/grid.420198.6", 
          "name": [
            "Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, N2L 3G1, Waterloo, ON, Canada", 
            "Perimeter Institute for Theoretical Physics, N2L 2Y5, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laflamme", 
        "givenName": "Raymond", 
        "id": "sg:person.01201156072.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201156072.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature11505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001649470", 
          "https://doi.org/10.1038/nature11505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmr.2004.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003417053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.78.012328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004747683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.78.012328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004747683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1203329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005479572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006516086", 
          "https://doi.org/10.1038/ncomms1166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.241641898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008475913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature17404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008911383", 
          "https://doi.org/10.1038/nature17404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011437797", 
          "https://doi.org/10.1038/nature12919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11823285_78", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012151540", 
          "https://doi.org/10.1007/11823285_78"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11823285_78", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012151540", 
          "https://doi.org/10.1007/11823285_78"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.110501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012514427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.110501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012514427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/12/7/075008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013001362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.170503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016655076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.170503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016655076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcs.2014.05.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017306895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.86.153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018947881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.86.153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018947881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026793563", 
          "https://doi.org/10.1038/nature08812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026793563", 
          "https://doi.org/10.1038/nature08812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/27/1/014001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037742743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018732.2014.933502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038104718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.012312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040171500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.012312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040171500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.010502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041352078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.010502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041352078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045883217", 
          "https://doi.org/10.1038/nature04272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045883217", 
          "https://doi.org/10.1038/nature04272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045883217", 
          "https://doi.org/10.1038/nature04272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.150502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049813916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.150502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049813916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052112144", 
          "https://doi.org/10.1038/ncomms4371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/237814.237866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053319325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.92.022116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060513842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.92.022116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060513842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.140505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.140505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1057726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062444360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1177838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062460456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.150503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084786701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.150503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084786701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2017.63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085099414", 
          "https://doi.org/10.1038/nphoton.2017.63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2017.63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085099414", 
          "https://doi.org/10.1038/nphoton.2017.63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.180511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092524802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.180511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092524802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sfcs.1994.365700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095740049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511976667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098774954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.22331/q-2018-08-08-80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106061534"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Accurate and efficient control of quantum systems is one of the central challenges for quantum information processing. Current state-of-the-art experiments rarely go beyond 10 qubits and in most cases demonstrate only limited control. Here we demonstrate control of a 12-qubit system, and show that the system can be employed as a quantum processor to optimize its own control sequence by using measurement-based feedback control (MQFC). The final product is a control sequence for a complex 12-qubit task: preparation of a 12-coherent state. The control sequence is about 10% more accurate than the one generated by the standard (classical) technique, showing that MQFC can correct for unknown imperfections. Apart from demonstrating a high level of control over a relatively large system, our results show that even at the 12-qubit level, a quantum processor can be a useful lab instrument. As an extension of our work, we propose a method for combining the MQFC technique with a twirling protocol, to optimize the control sequence that produces a desired Clifford gate. Realizing high accuracy control of quantum systems represents a crucial ingredient in building large-scaled quantum computers. An international team of researchers led by Raymond Laflamme at Canada\u2019s Institute for Quantum Computing has succeeded in manipulating a 12-qubit nuclear magnetic resonance quantum processor with unprecedented precision. The researchers build a closed-loop pulse auto-tunning setup which employs the controlled system itself to optimize its own pulses. This gives to the benefits of more efficient pulse optimization and more robustness to system uncertainties. Because that the experiment achieves high level of individual controls over all of the qubits, it is at the cutting edge of experimental quantum computing. The experimental techniques are ready to be transferred to other quantum technologies, such as nitrogen-vacancy centers, trapped ions or superconducting circuits.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41534-017-0045-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7188998", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6976555", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1285192", 
        "issn": [
          "2056-6387"
        ], 
        "name": "npj Quantum Information", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Enhancing quantum control by bootstrapping a quantum processor of 12 qubits", 
    "pagination": "45", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "031ab9446bd30db4222e3b40b6cc648facdd8cc43910ae63cbe4cf832141e9fb"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41534-017-0045-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092261970"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41534-017-0045-z", 
      "https://app.dimensions.ai/details/publication/pub.1092261970"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000568.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41534-017-0045-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41534-017-0045-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41534-017-0045-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41534-017-0045-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41534-017-0045-z'


 

This table displays all metadata directly associated to this object as RDF triples.

281 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41534-017-0045-z schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Ned23b278967444bcb32c5eea3ad3ef96
4 schema:citation sg:pub.10.1007/11823285_78
5 sg:pub.10.1038/nature04272
6 sg:pub.10.1038/nature08812
7 sg:pub.10.1038/nature11505
8 sg:pub.10.1038/nature12919
9 sg:pub.10.1038/nature17404
10 sg:pub.10.1038/ncomms1166
11 sg:pub.10.1038/ncomms4371
12 sg:pub.10.1038/nphoton.2017.63
13 https://doi.org/10.1016/j.jmr.2004.11.004
14 https://doi.org/10.1016/j.tcs.2014.05.025
15 https://doi.org/10.1017/cbo9780511976667
16 https://doi.org/10.1073/pnas.241641898
17 https://doi.org/10.1080/00018732.2014.933502
18 https://doi.org/10.1088/0953-2048/27/1/014001
19 https://doi.org/10.1088/1367-2630/12/7/075008
20 https://doi.org/10.1103/physreva.78.012328
21 https://doi.org/10.1103/physreva.79.012312
22 https://doi.org/10.1103/physreva.92.022116
23 https://doi.org/10.1103/physrevlett.103.110501
24 https://doi.org/10.1103/physrevlett.103.150502
25 https://doi.org/10.1103/physrevlett.107.170503
26 https://doi.org/10.1103/physrevlett.113.010502
27 https://doi.org/10.1103/physrevlett.114.140505
28 https://doi.org/10.1103/physrevlett.118.150503
29 https://doi.org/10.1103/physrevlett.119.180511
30 https://doi.org/10.1103/revmodphys.86.153
31 https://doi.org/10.1109/sfcs.1994.365700
32 https://doi.org/10.1126/science.1057726
33 https://doi.org/10.1126/science.1177838
34 https://doi.org/10.1126/science.1203329
35 https://doi.org/10.1145/237814.237866
36 https://doi.org/10.22331/q-2018-08-08-80
37 schema:datePublished 2017-12
38 schema:datePublishedReg 2017-12-01
39 schema:description Accurate and efficient control of quantum systems is one of the central challenges for quantum information processing. Current state-of-the-art experiments rarely go beyond 10 qubits and in most cases demonstrate only limited control. Here we demonstrate control of a 12-qubit system, and show that the system can be employed as a quantum processor to optimize its own control sequence by using measurement-based feedback control (MQFC). The final product is a control sequence for a complex 12-qubit task: preparation of a 12-coherent state. The control sequence is about 10% more accurate than the one generated by the standard (classical) technique, showing that MQFC can correct for unknown imperfections. Apart from demonstrating a high level of control over a relatively large system, our results show that even at the 12-qubit level, a quantum processor can be a useful lab instrument. As an extension of our work, we propose a method for combining the MQFC technique with a twirling protocol, to optimize the control sequence that produces a desired Clifford gate. Realizing high accuracy control of quantum systems represents a crucial ingredient in building large-scaled quantum computers. An international team of researchers led by Raymond Laflamme at Canada’s Institute for Quantum Computing has succeeded in manipulating a 12-qubit nuclear magnetic resonance quantum processor with unprecedented precision. The researchers build a closed-loop pulse auto-tunning setup which employs the controlled system itself to optimize its own pulses. This gives to the benefits of more efficient pulse optimization and more robustness to system uncertainties. Because that the experiment achieves high level of individual controls over all of the qubits, it is at the cutting edge of experimental quantum computing. The experimental techniques are ready to be transferred to other quantum technologies, such as nitrogen-vacancy centers, trapped ions or superconducting circuits.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N4a2d2ce243e1463b9178e50c0c56563d
44 Nb141df8bd1d440f88f557cd88ef36a76
45 sg:journal.1285192
46 schema:name Enhancing quantum control by bootstrapping a quantum processor of 12 qubits
47 schema:pagination 45
48 schema:productId N1953555a339640d58b7c615ced131e8d
49 N41d6c32825cc48679cb85003201ca72d
50 Ndb8f14dd9ce04f699bf6dbf00fe254b4
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092261970
52 https://doi.org/10.1038/s41534-017-0045-z
53 schema:sdDatePublished 2019-04-11T01:16
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N940ea1c650db4769ac8cf0d8234301fd
56 schema:url https://www.nature.com/articles/s41534-017-0045-z
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N074a99b2381e41699b613c6477936420 rdf:first sg:person.01060076667.24
61 rdf:rest Neb8756985db34ceab64955aa6709b52a
62 N1046b5224c524aa4ba74fb93e632ba2a rdf:first sg:person.016667237271.57
63 rdf:rest N8fc2f25881b043eebe8a780d9044b86a
64 N1953555a339640d58b7c615ced131e8d schema:name doi
65 schema:value 10.1038/s41534-017-0045-z
66 rdf:type schema:PropertyValue
67 N2291fbbd26d2476d9dfbf9e23e4b8bec rdf:first sg:person.0704065453.79
68 rdf:rest N82b42faa3867477f9cd41830944bab24
69 N3845c67e2dcc4edf81c452cdd685b4c4 rdf:first sg:person.01201156072.19
70 rdf:rest rdf:nil
71 N41d6c32825cc48679cb85003201ca72d schema:name readcube_id
72 schema:value 031ab9446bd30db4222e3b40b6cc648facdd8cc43910ae63cbe4cf832141e9fb
73 rdf:type schema:PropertyValue
74 N43152448355d4a7199b5dafe526dddef rdf:first sg:person.013371372224.62
75 rdf:rest Ndb75d192adf34093a614a2db0faf7089
76 N4a2d2ce243e1463b9178e50c0c56563d schema:issueNumber 1
77 rdf:type schema:PublicationIssue
78 N521b642c519a4c609ab9b0db8e165526 rdf:first sg:person.011311427033.00
79 rdf:rest Nd0c6282ee76f454086ca46c2f9c866cf
80 N69d4f619431a48979f44ecd0b494135f rdf:first sg:person.016606361557.53
81 rdf:rest N43152448355d4a7199b5dafe526dddef
82 N82b42faa3867477f9cd41830944bab24 rdf:first sg:person.01201061772.16
83 rdf:rest N074a99b2381e41699b613c6477936420
84 N8fc2f25881b043eebe8a780d9044b86a rdf:first sg:person.01025061561.24
85 rdf:rest N2291fbbd26d2476d9dfbf9e23e4b8bec
86 N940ea1c650db4769ac8cf0d8234301fd schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Nb141df8bd1d440f88f557cd88ef36a76 schema:volumeNumber 3
89 rdf:type schema:PublicationVolume
90 Nd0c6282ee76f454086ca46c2f9c866cf rdf:first sg:person.01043605407.41
91 rdf:rest N1046b5224c524aa4ba74fb93e632ba2a
92 Ndb75d192adf34093a614a2db0faf7089 rdf:first sg:person.016367452315.58
93 rdf:rest N521b642c519a4c609ab9b0db8e165526
94 Ndb8f14dd9ce04f699bf6dbf00fe254b4 schema:name dimensions_id
95 schema:value pub.1092261970
96 rdf:type schema:PropertyValue
97 Neb8756985db34ceab64955aa6709b52a rdf:first sg:person.0667360406.43
98 rdf:rest N3845c67e2dcc4edf81c452cdd685b4c4
99 Ned23b278967444bcb32c5eea3ad3ef96 rdf:first sg:person.0756746361.13
100 rdf:rest N69d4f619431a48979f44ecd0b494135f
101 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
102 schema:name Physical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
105 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
106 rdf:type schema:DefinedTerm
107 sg:grant.6976555 http://pending.schema.org/fundedItem sg:pub.10.1038/s41534-017-0045-z
108 rdf:type schema:MonetaryGrant
109 sg:grant.7188998 http://pending.schema.org/fundedItem sg:pub.10.1038/s41534-017-0045-z
110 rdf:type schema:MonetaryGrant
111 sg:journal.1285192 schema:issn 2056-6387
112 schema:name npj Quantum Information
113 rdf:type schema:Periodical
114 sg:person.01025061561.24 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
115 schema:familyName Li
116 schema:givenName Hang
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025061561.24
118 rdf:type schema:Person
119 sg:person.01043605407.41 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
120 schema:familyName Feng
121 schema:givenName Guanru
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043605407.41
123 rdf:type schema:Person
124 sg:person.01060076667.24 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
125 schema:familyName Baugh
126 schema:givenName Jonathan
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060076667.24
128 rdf:type schema:Person
129 sg:person.011311427033.00 schema:affiliation https://www.grid.ac/institutes/grid.4372.2
130 schema:familyName Park
131 schema:givenName Annie Jihyun
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011311427033.00
133 rdf:type schema:Person
134 sg:person.01201061772.16 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
135 schema:familyName Brodutch
136 schema:givenName Aharon
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201061772.16
138 rdf:type schema:Person
139 sg:person.01201156072.19 schema:affiliation https://www.grid.ac/institutes/grid.420198.6
140 schema:familyName Laflamme
141 schema:givenName Raymond
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201156072.19
143 rdf:type schema:Person
144 sg:person.013371372224.62 schema:affiliation https://www.grid.ac/institutes/grid.410743.5
145 schema:familyName Li
146 schema:givenName Jun
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013371372224.62
148 rdf:type schema:Person
149 sg:person.016367452315.58 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
150 schema:familyName Katiyar
151 schema:givenName Hemant
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016367452315.58
153 rdf:type schema:Person
154 sg:person.016606361557.53 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
155 schema:familyName Li
156 schema:givenName Keren
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016606361557.53
158 rdf:type schema:Person
159 sg:person.016667237271.57 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
160 schema:familyName Xin
161 schema:givenName Tao
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016667237271.57
163 rdf:type schema:Person
164 sg:person.0667360406.43 schema:affiliation https://www.grid.ac/institutes/grid.34429.38
165 schema:familyName Zeng
166 schema:givenName Bei
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667360406.43
168 rdf:type schema:Person
169 sg:person.0704065453.79 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
170 schema:familyName Long
171 schema:givenName Guilu
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704065453.79
173 rdf:type schema:Person
174 sg:person.0756746361.13 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
175 schema:familyName Lu
176 schema:givenName Dawei
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756746361.13
178 rdf:type schema:Person
179 sg:pub.10.1007/11823285_78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012151540
180 https://doi.org/10.1007/11823285_78
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nature04272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045883217
183 https://doi.org/10.1038/nature04272
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nature08812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026793563
186 https://doi.org/10.1038/nature08812
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nature11505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001649470
189 https://doi.org/10.1038/nature11505
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nature12919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011437797
192 https://doi.org/10.1038/nature12919
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nature17404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008911383
195 https://doi.org/10.1038/nature17404
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/ncomms1166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006516086
198 https://doi.org/10.1038/ncomms1166
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/ncomms4371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052112144
201 https://doi.org/10.1038/ncomms4371
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/nphoton.2017.63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085099414
204 https://doi.org/10.1038/nphoton.2017.63
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.jmr.2004.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003417053
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.tcs.2014.05.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017306895
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1017/cbo9780511976667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098774954
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1073/pnas.241641898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008475913
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1080/00018732.2014.933502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038104718
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1088/0953-2048/27/1/014001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037742743
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1088/1367-2630/12/7/075008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013001362
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physreva.78.012328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004747683
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physreva.79.012312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040171500
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physreva.92.022116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060513842
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physrevlett.103.110501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012514427
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physrevlett.103.150502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049813916
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/physrevlett.107.170503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016655076
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1103/physrevlett.113.010502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041352078
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1103/physrevlett.114.140505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060763515
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1103/physrevlett.118.150503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084786701
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1103/physrevlett.119.180511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092524802
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1103/revmodphys.86.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018947881
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1109/sfcs.1994.365700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095740049
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1126/science.1057726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062444360
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1126/science.1177838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062460456
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1126/science.1203329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005479572
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1145/237814.237866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053319325
251 rdf:type schema:CreativeWork
252 https://doi.org/10.22331/q-2018-08-08-80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106061534
253 rdf:type schema:CreativeWork
254 https://www.grid.ac/institutes/grid.12527.33 schema:alternateName Tsinghua University
255 schema:name Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, N2L 3G1, Waterloo, ON, Canada
256 State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084, Beijing, China
257 rdf:type schema:Organization
258 https://www.grid.ac/institutes/grid.17063.33 schema:alternateName University of Toronto
259 schema:name Department of Physics and Department of Electrical and Computer Engineering, Center for Quantum Information and Quantum Control, University of Toronto, M5S 3H6, Toronto, ON, Canada
260 Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, N2L 3G1, Waterloo, ON, Canada
261 rdf:type schema:Organization
262 https://www.grid.ac/institutes/grid.34429.38 schema:alternateName University of Guelph
263 schema:name Department of Mathematics and Statistics, University of Guelph, N1G 2W1, Guelph, ON, Canada
264 Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, N2L 3G1, Waterloo, ON, Canada
265 rdf:type schema:Organization
266 https://www.grid.ac/institutes/grid.410743.5 schema:alternateName Beijing Computational Science Research Center
267 schema:name Beijing Computational Science Research Center, 100193, Beijing, China
268 Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, N2L 3G1, Waterloo, ON, Canada
269 rdf:type schema:Organization
270 https://www.grid.ac/institutes/grid.420198.6 schema:alternateName Perimeter Institute
271 schema:name Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, N2L 3G1, Waterloo, ON, Canada
272 Perimeter Institute for Theoretical Physics, N2L 2Y5, Waterloo, ON, Canada
273 rdf:type schema:Organization
274 https://www.grid.ac/institutes/grid.4372.2 schema:alternateName Max Planck Society
275 schema:name Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, N2L 3G1, Waterloo, ON, Canada
276 Max-Planck-Institutfür Quantenoptik, D-85748, Garching, Germany
277 rdf:type schema:Organization
278 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
279 schema:name Department of Physics, Southern University of Science and Technology, 518055, Shenzhen, China
280 Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, N2L 3G1, Waterloo, ON, Canada
281 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...