Daemonic ergotropy: enhanced work extraction from quantum correlations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Gianluca Francica, John Goold, Francesco Plastina, Mauro Paternostro

ABSTRACT

We investigate how the presence of quantum correlations can influence work extraction in closed quantum systems, establishing a new link between the field of quantum non-equilibrium thermodynamics and the one of quantum information theory. We consider a bipartite quantum system and we show that it is possible to optimize the process of work extraction, thanks to the correlations between the two parts of the system, by using an appropriate feedback protocol based on the concept of ergotropy. We prove that the maximum gain in the extracted work is related to the existence of quantum correlations between the two parts, quantified by either quantum discord or, for pure states, entanglement. We then illustrate our general findings on a simple physical situation consisting of a qubit system. A strong connection exists between the ability of a quantum system to perform thermodynamic work and the amount of quantum correlations that are set in its physical configuration. Here, in this manuscript, the authors have considered the problem embodied by the extraction of thermodynamic work from an elementary quantum system. They have allowed the system to be aided by an ‘‘ancilla’’, upon which measurements can be performed in the best possible way. It has been found that more work is extracted from the system when it shares quantum correlations with its ancilla, thus shedding light on a fundamental question in quantum thermodynamics: are genuine quantum resources useful for thermodynamics purposes? More... »

PAGES

12

References to SciGraph publications

  • 1978-10. Passive states and KMS states for general quantum systems in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1978-12. Thermodynamical proof of the Gibbs formula for elementary quantum systems in JOURNAL OF STATISTICAL PHYSICS
  • 2014-12. A quantum diffractor for thermal flux in NATURE COMMUNICATIONS
  • 2014-06. Coherent Caloritronics in Josephson-Based Nanocircuits in JOURNAL OF LOW TEMPERATURE PHYSICS
  • 2012-12. The Josephson heat interferometer in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41534-017-0012-8

    DOI

    http://dx.doi.org/10.1038/s41534-017-0012-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084130055


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Calabria", 
              "id": "https://www.grid.ac/institutes/grid.7778.f", 
              "name": [
                "Dipartimento Fisica, Universit\u00e0 della Calabria, 87036, Arcavacata di Rende (CS), Italy", 
                "INFN\u2014Gruppo Collegato di Cosenza, Cosenza, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Francica", 
            "givenName": "Gianluca", 
            "id": "sg:person.011757156275.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011757156275.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Centre for Theoretical Physics", 
              "id": "https://www.grid.ac/institutes/grid.419330.c", 
              "name": [
                "International Centre for Theoretical Physics, Trieste, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goold", 
            "givenName": "John", 
            "id": "sg:person.01135767534.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135767534.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Calabria", 
              "id": "https://www.grid.ac/institutes/grid.7778.f", 
              "name": [
                "Dipartimento Fisica, Universit\u00e0 della Calabria, 87036, Arcavacata di Rende (CS), Italy", 
                "INFN\u2014Gruppo Collegato di Cosenza, Cosenza, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Plastina", 
            "givenName": "Francesco", 
            "id": "sg:person.0755747774.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755747774.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Queen's University Belfast", 
              "id": "https://www.grid.ac/institutes/grid.4777.3", 
              "name": [
                "Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen\u2019s University, BT7 1NN, Belfast, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paternostro", 
            "givenName": "Mauro", 
            "id": "sg:person.01052172200.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052172200.17"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ncomms4579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000495911", 
              "https://doi.org/10.1038/ncomms4579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.67.022110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001015764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.67.022110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001015764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01614224", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001456458", 
              "https://doi.org/10.1007/bf01614224"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01614224", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001456458", 
              "https://doi.org/10.1007/bf01614224"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/e18070244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001781500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.81.865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002548185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.81.865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002548185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002704733", 
              "https://doi.org/10.1038/nature11702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.88.017901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004541830"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.88.017901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004541830"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1751-8113/49/14/143001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011095890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01011769", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012442699", 
              "https://doi.org/10.1007/bf01011769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.89.180402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016602140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.89.180402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016602140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.111.240401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016951022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.111.240401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016951022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.010501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017175227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.010501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017175227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.5.041011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018770312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.5.041011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018770312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.114.183602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021662973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.114.183602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021662973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1751-8113/44/35/352002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022716659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1406966111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025071901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.84.1655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026171320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.84.1655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026171320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00107510010018916", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028997595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10909-014-1132-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031479278", 
              "https://doi.org/10.1007/s10909-014-1132-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.83.012102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035262795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.83.012102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035262795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aad6320", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035484839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/e15062100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036388768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00107514.2016.1201896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036938245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.5.031044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043602920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.5.031044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043602920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/epl/i2004-10101-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047795710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-4371(01)00605-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048342367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/bs.aamop.2015.07.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048576798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/34/35/315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049084978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1367-2630/17/7/075015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050523424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1367-2630/18/2/023045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059137299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1751-8113/49/34/345002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059174488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.83.032101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060508441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.83.032101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060508441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.93.024501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060648560"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.93.024501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060648560"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.94.184503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060653013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.94.184503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060653013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.94.052122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060750776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.94.052122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060750776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1078955", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062447174"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "We investigate how the presence of quantum correlations can influence work extraction in closed quantum systems, establishing a new link between the field of quantum non-equilibrium thermodynamics and the one of quantum information theory. We consider a bipartite quantum system and we show that it is possible to optimize the process of work extraction, thanks to the correlations between the two parts of the system, by using an appropriate feedback protocol based on the concept of ergotropy. We prove that the maximum gain in the extracted work is related to the existence of quantum correlations between the two parts, quantified by either quantum discord or, for pure states, entanglement. We then illustrate our general findings on a simple physical situation consisting of a qubit system. A strong connection exists between the ability of a quantum system to perform thermodynamic work and the amount of quantum correlations that are set in its physical configuration. Here, in this manuscript, the authors have considered the problem embodied by the extraction of thermodynamic work from an elementary quantum system. They have allowed the system to be aided by an \u2018\u2018ancilla\u2019\u2019, upon which measurements can be performed in the best possible way. It has been found that more work is extracted from the system when it shares quantum correlations with its ancilla, thus shedding light on a fundamental question in quantum thermodynamics: are genuine quantum resources useful for thermodynamics purposes?", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41534-017-0012-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3866177", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6540632", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3799159", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3937980", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1285192", 
            "issn": [
              "2056-6387"
            ], 
            "name": "npj Quantum Information", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "name": "Daemonic ergotropy: enhanced work extraction from quantum correlations", 
        "pagination": "12", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a129d51d0a12ac6b935449e074e9b18b986945b7c5ef2bacb19b15d51edf17dc"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41534-017-0012-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084130055"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41534-017-0012-8", 
          "https://app.dimensions.ai/details/publication/pub.1084130055"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000492.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41534-017-0012-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41534-017-0012-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41534-017-0012-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41534-017-0012-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41534-017-0012-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    209 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41534-017-0012-8 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author N33fc1f4e42904348b50b82c49d76055f
    4 schema:citation sg:pub.10.1007/bf01011769
    5 sg:pub.10.1007/bf01614224
    6 sg:pub.10.1007/s10909-014-1132-6
    7 sg:pub.10.1038/nature11702
    8 sg:pub.10.1038/ncomms4579
    9 https://doi.org/10.1016/bs.aamop.2015.07.002
    10 https://doi.org/10.1016/s0378-4371(01)00605-7
    11 https://doi.org/10.1073/pnas.1406966111
    12 https://doi.org/10.1080/00107510010018916
    13 https://doi.org/10.1080/00107514.2016.1201896
    14 https://doi.org/10.1088/0305-4470/34/35/315
    15 https://doi.org/10.1088/1367-2630/17/7/075015
    16 https://doi.org/10.1088/1367-2630/18/2/023045
    17 https://doi.org/10.1088/1751-8113/44/35/352002
    18 https://doi.org/10.1088/1751-8113/49/14/143001
    19 https://doi.org/10.1088/1751-8113/49/34/345002
    20 https://doi.org/10.1103/physreva.67.022110
    21 https://doi.org/10.1103/physreva.83.012102
    22 https://doi.org/10.1103/physreva.83.032101
    23 https://doi.org/10.1103/physrevb.93.024501
    24 https://doi.org/10.1103/physrevb.94.184503
    25 https://doi.org/10.1103/physreve.94.052122
    26 https://doi.org/10.1103/physrevlett.110.010501
    27 https://doi.org/10.1103/physrevlett.111.240401
    28 https://doi.org/10.1103/physrevlett.114.183602
    29 https://doi.org/10.1103/physrevlett.88.017901
    30 https://doi.org/10.1103/physrevlett.89.180402
    31 https://doi.org/10.1103/physrevx.5.031044
    32 https://doi.org/10.1103/physrevx.5.041011
    33 https://doi.org/10.1103/revmodphys.81.865
    34 https://doi.org/10.1103/revmodphys.84.1655
    35 https://doi.org/10.1126/science.1078955
    36 https://doi.org/10.1126/science.aad6320
    37 https://doi.org/10.1209/epl/i2004-10101-2
    38 https://doi.org/10.3390/e15062100
    39 https://doi.org/10.3390/e18070244
    40 schema:datePublished 2017-12
    41 schema:datePublishedReg 2017-12-01
    42 schema:description We investigate how the presence of quantum correlations can influence work extraction in closed quantum systems, establishing a new link between the field of quantum non-equilibrium thermodynamics and the one of quantum information theory. We consider a bipartite quantum system and we show that it is possible to optimize the process of work extraction, thanks to the correlations between the two parts of the system, by using an appropriate feedback protocol based on the concept of ergotropy. We prove that the maximum gain in the extracted work is related to the existence of quantum correlations between the two parts, quantified by either quantum discord or, for pure states, entanglement. We then illustrate our general findings on a simple physical situation consisting of a qubit system. A strong connection exists between the ability of a quantum system to perform thermodynamic work and the amount of quantum correlations that are set in its physical configuration. Here, in this manuscript, the authors have considered the problem embodied by the extraction of thermodynamic work from an elementary quantum system. They have allowed the system to be aided by an ‘‘ancilla’’, upon which measurements can be performed in the best possible way. It has been found that more work is extracted from the system when it shares quantum correlations with its ancilla, thus shedding light on a fundamental question in quantum thermodynamics: are genuine quantum resources useful for thermodynamics purposes?
    43 schema:genre research_article
    44 schema:inLanguage en
    45 schema:isAccessibleForFree true
    46 schema:isPartOf N6eba3e56c0594a1984a76895c697decb
    47 Naf7ca26acd49468688f49cf813a3a524
    48 sg:journal.1285192
    49 schema:name Daemonic ergotropy: enhanced work extraction from quantum correlations
    50 schema:pagination 12
    51 schema:productId N30d6bc8be41440318ded200280d5c768
    52 N670653c711ae47588efa9ade73086575
    53 Na588c87b40fb4e3c914fa2b563cbed40
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084130055
    55 https://doi.org/10.1038/s41534-017-0012-8
    56 schema:sdDatePublished 2019-04-10T17:27
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher N9b41dbc0ab14443384a5e4d2f90b7348
    59 schema:url https://www.nature.com/articles/s41534-017-0012-8
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N30d6bc8be41440318ded200280d5c768 schema:name readcube_id
    64 schema:value a129d51d0a12ac6b935449e074e9b18b986945b7c5ef2bacb19b15d51edf17dc
    65 rdf:type schema:PropertyValue
    66 N33fc1f4e42904348b50b82c49d76055f rdf:first sg:person.011757156275.47
    67 rdf:rest Ncd0b32abe2124c4cbbef5c2f50c95846
    68 N670653c711ae47588efa9ade73086575 schema:name doi
    69 schema:value 10.1038/s41534-017-0012-8
    70 rdf:type schema:PropertyValue
    71 N6eba3e56c0594a1984a76895c697decb schema:volumeNumber 3
    72 rdf:type schema:PublicationVolume
    73 N9b41dbc0ab14443384a5e4d2f90b7348 schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 N9d6b94d5d3854a94b0c7f77f94308cf3 rdf:first sg:person.0755747774.99
    76 rdf:rest Nb20d32d56a254003ba1899d2b1dc11e4
    77 Na588c87b40fb4e3c914fa2b563cbed40 schema:name dimensions_id
    78 schema:value pub.1084130055
    79 rdf:type schema:PropertyValue
    80 Naf7ca26acd49468688f49cf813a3a524 schema:issueNumber 1
    81 rdf:type schema:PublicationIssue
    82 Nb20d32d56a254003ba1899d2b1dc11e4 rdf:first sg:person.01052172200.17
    83 rdf:rest rdf:nil
    84 Ncd0b32abe2124c4cbbef5c2f50c95846 rdf:first sg:person.01135767534.28
    85 rdf:rest N9d6b94d5d3854a94b0c7f77f94308cf3
    86 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Physical Sciences
    88 rdf:type schema:DefinedTerm
    89 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    91 rdf:type schema:DefinedTerm
    92 sg:grant.3799159 http://pending.schema.org/fundedItem sg:pub.10.1038/s41534-017-0012-8
    93 rdf:type schema:MonetaryGrant
    94 sg:grant.3866177 http://pending.schema.org/fundedItem sg:pub.10.1038/s41534-017-0012-8
    95 rdf:type schema:MonetaryGrant
    96 sg:grant.3937980 http://pending.schema.org/fundedItem sg:pub.10.1038/s41534-017-0012-8
    97 rdf:type schema:MonetaryGrant
    98 sg:grant.6540632 http://pending.schema.org/fundedItem sg:pub.10.1038/s41534-017-0012-8
    99 rdf:type schema:MonetaryGrant
    100 sg:journal.1285192 schema:issn 2056-6387
    101 schema:name npj Quantum Information
    102 rdf:type schema:Periodical
    103 sg:person.01052172200.17 schema:affiliation https://www.grid.ac/institutes/grid.4777.3
    104 schema:familyName Paternostro
    105 schema:givenName Mauro
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052172200.17
    107 rdf:type schema:Person
    108 sg:person.01135767534.28 schema:affiliation https://www.grid.ac/institutes/grid.419330.c
    109 schema:familyName Goold
    110 schema:givenName John
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135767534.28
    112 rdf:type schema:Person
    113 sg:person.011757156275.47 schema:affiliation https://www.grid.ac/institutes/grid.7778.f
    114 schema:familyName Francica
    115 schema:givenName Gianluca
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011757156275.47
    117 rdf:type schema:Person
    118 sg:person.0755747774.99 schema:affiliation https://www.grid.ac/institutes/grid.7778.f
    119 schema:familyName Plastina
    120 schema:givenName Francesco
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755747774.99
    122 rdf:type schema:Person
    123 sg:pub.10.1007/bf01011769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012442699
    124 https://doi.org/10.1007/bf01011769
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/bf01614224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001456458
    127 https://doi.org/10.1007/bf01614224
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/s10909-014-1132-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031479278
    130 https://doi.org/10.1007/s10909-014-1132-6
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1038/nature11702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002704733
    133 https://doi.org/10.1038/nature11702
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1038/ncomms4579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000495911
    136 https://doi.org/10.1038/ncomms4579
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/bs.aamop.2015.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048576798
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/s0378-4371(01)00605-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048342367
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1073/pnas.1406966111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025071901
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1080/00107510010018916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028997595
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1080/00107514.2016.1201896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036938245
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1088/0305-4470/34/35/315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049084978
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1088/1367-2630/17/7/075015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050523424
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1088/1367-2630/18/2/023045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059137299
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1088/1751-8113/44/35/352002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022716659
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1088/1751-8113/49/14/143001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011095890
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1088/1751-8113/49/34/345002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059174488
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1103/physreva.67.022110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001015764
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1103/physreva.83.012102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035262795
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1103/physreva.83.032101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060508441
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1103/physrevb.93.024501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060648560
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1103/physrevb.94.184503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060653013
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1103/physreve.94.052122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060750776
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1103/physrevlett.110.010501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017175227
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1103/physrevlett.111.240401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016951022
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1103/physrevlett.114.183602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021662973
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1103/physrevlett.88.017901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004541830
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1103/physrevlett.89.180402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016602140
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1103/physrevx.5.031044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043602920
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1103/physrevx.5.041011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018770312
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1103/revmodphys.81.865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002548185
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1103/revmodphys.84.1655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026171320
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1126/science.1078955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062447174
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1126/science.aad6320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035484839
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1209/epl/i2004-10101-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047795710
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.3390/e15062100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036388768
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.3390/e18070244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001781500
    199 rdf:type schema:CreativeWork
    200 https://www.grid.ac/institutes/grid.419330.c schema:alternateName International Centre for Theoretical Physics
    201 schema:name International Centre for Theoretical Physics, Trieste, Italy
    202 rdf:type schema:Organization
    203 https://www.grid.ac/institutes/grid.4777.3 schema:alternateName Queen's University Belfast
    204 schema:name Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen’s University, BT7 1NN, Belfast, UK
    205 rdf:type schema:Organization
    206 https://www.grid.ac/institutes/grid.7778.f schema:alternateName University of Calabria
    207 schema:name Dipartimento Fisica, Università della Calabria, 87036, Arcavacata di Rende (CS), Italy
    208 INFN—Gruppo Collegato di Cosenza, Cosenza, Italy
    209 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...