Realizing universal quantum gates with topological bases in quantum-simulated superconducting chains View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Yong Hu, Y. X. Zhao, Zheng-Yuan Xue, Z. D. Wang

ABSTRACT

One-dimensional time-reversal invariant topological superconducting wires of the symmetry class DIII exhibit exotic physics which can be exploited to realize the set of universal operations in topological quantum computing. However, the verification of DIII-class physics in conventional condensed matter materials is highly nontrivial due to realistic constraints. Here we propose a symmetry-protected hard-core boson simulator of the one-dimensional DIII topological superconductor. By using the developed dispersive dynamic modulation approach, not only the faithful simulation of this new type of spinful superconducting chains is achieved, but also a set of universal quantum gates can be realized with the computational basis formed by the degenerate ground states that are topologically protected against random local perturbations. Physical implementation of our scheme based on a Josephson quantum circuit is presented, where our detailed analysis pinpoints that this scheme is experimentally feasible with the state-of-the-art technology. Topological quantum matters have been recognized to have promising applications in realizing novel fault-tolerant quantum processes. In particular, one-dimensional time-reversal-symmetric (TRS) topological superconductors may be utilized to establish universal quantum gates with topological bases. However, how to realize them in conventional electronic systems is extremely challeging due to constraints of materials and coexisting complicated mechanisms. Here Hu, Zhao, Xue, and Wang propose an experimentally feasible scheme of hard-core boson quantum-simulator of such spinful TRS topological superconductors. Using a dispersive dynamic modulation approach, not only a faithful quantum simulation of TRS superconductor is achieved, but also a set of universal quantum gates can be constructed topologically. Physical implementation of this scheme is also elaborated based on superconducting quantum circuits, reavealing its feasibility with current technology. More... »

PAGES

8

Journal

TITLE

npj Quantum Information

ISSUE

1

VOLUME

3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41534-017-0009-3

DOI

http://dx.doi.org/10.1038/s41534-017-0009-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084130053


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, China", 
            "Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Yong", 
        "id": "sg:person.01257374044.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257374044.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Y. X.", 
        "id": "sg:person.012566661442.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012566661442.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, 510006, Guangzhou, China", 
            "Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Zheng-Yuan", 
        "id": "sg:person.01143145444.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143145444.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Z. D.", 
        "id": "sg:person.011374710011.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011374710011.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreva.91.012336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000703377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.91.012336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000703377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.075111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003107026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.075111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003107026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.056403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003953500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.056403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003953500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.3045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004083979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.3045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004083979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.060509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004762774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.060509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004762774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.91.033632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006608823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.91.033632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006608823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.116402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007253706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.116402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007253706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep08352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007310556", 
          "https://doi.org/10.1038/srep08352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.117002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009855677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.117002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009855677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.253606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011261404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.253606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011261404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.195125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011668608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.195125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011668608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.240501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012885227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.240501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012885227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.042319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015118427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.042319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015118427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.180502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015287585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.180502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015287585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016787662", 
          "https://doi.org/10.1038/nature10122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.201200261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017263283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.184516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026704291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.184516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026704291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/npjqi.2016.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027831640", 
          "https://doi.org/10.1038/npjqi.2016.15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.187006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030141595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.187006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030141595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.023837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032704464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.023837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032704464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.167001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032801644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.167001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032801644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/1063-7869/44/10s/s29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036504866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.080502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037630875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.080502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037630875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.245438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038061069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.245438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038061069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.4.031027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038187967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.4.031027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038187967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep05535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038340549", 
          "https://doi.org/10.1038/srep05535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.126402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038786960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.126402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038786960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.033601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039456470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.033601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039456470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.1057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045115933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.1057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045115933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.86.361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045896130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.86.361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045896130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3149495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045986733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.110504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048522865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.110504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048522865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.240404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048700261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.240404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048700261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.070502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049725709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.070502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049725709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1231930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049747540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050351805", 
          "https://doi.org/10.1038/nphys2251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.220502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052239889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.220502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052239889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.115158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053707950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.115158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053707950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.98041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058138147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.92.012320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060513679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.92.012320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060513679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.93.062319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060515902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.93.062319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060515902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.210403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.210403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.016401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.016401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.45.494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.45.494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9781400846733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096911207"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "One-dimensional time-reversal invariant topological superconducting wires of the symmetry class DIII exhibit exotic physics which can be exploited to realize the set of universal operations in topological quantum computing. However, the verification of DIII-class physics in conventional condensed matter materials is highly nontrivial due to realistic constraints. Here we propose a symmetry-protected hard-core boson simulator of the one-dimensional DIII topological superconductor. By using the developed dispersive dynamic modulation approach, not only the faithful simulation of this new type of spinful superconducting chains is achieved, but also a set of universal quantum gates can be realized with the computational basis formed by the degenerate ground states that are topologically protected against random local perturbations. Physical implementation of our scheme based on a Josephson quantum circuit is presented, where our detailed analysis pinpoints that this scheme is experimentally feasible with the state-of-the-art technology. Topological quantum matters have been recognized to have promising applications in realizing novel fault-tolerant quantum processes. In particular, one-dimensional time-reversal-symmetric (TRS) topological superconductors may be utilized to establish universal quantum gates with topological bases. However, how to realize them in conventional electronic systems is extremely challeging due to constraints of materials and coexisting complicated mechanisms. Here Hu, Zhao, Xue, and Wang propose an experimentally feasible scheme of hard-core boson quantum-simulator of such spinful TRS topological superconductors. Using a dispersive dynamic modulation approach, not only a faithful quantum simulation of TRS superconductor is achieved, but also a set of universal quantum gates can be constructed topologically. Physical implementation of this scheme is also elaborated based on superconducting quantum circuits, reavealing its feasibility with current technology.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41534-017-0009-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1285192", 
        "issn": [
          "2056-6387"
        ], 
        "name": "npj Quantum Information", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Realizing universal quantum gates with topological bases in quantum-simulated superconducting chains", 
    "pagination": "8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "092fb65e9bf8a30e9865be90c365df4c194055cfee3cb455a67bb4779fe62a7c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41534-017-0009-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084130053"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41534-017-0009-3", 
      "https://app.dimensions.ai/details/publication/pub.1084130053"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000492.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41534-017-0009-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41534-017-0009-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41534-017-0009-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41534-017-0009-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41534-017-0009-3'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      72 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41534-017-0009-3 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author Nf3a2c51d85c240018c34b617e5482dba
4 schema:citation sg:pub.10.1038/nature10122
5 sg:pub.10.1038/nphys2251
6 sg:pub.10.1038/npjqi.2016.15
7 sg:pub.10.1038/srep05535
8 sg:pub.10.1038/srep08352
9 https://doi.org/10.1002/andp.201200261
10 https://doi.org/10.1063/1.3149495
11 https://doi.org/10.1063/1.98041
12 https://doi.org/10.1070/1063-7869/44/10s/s29
13 https://doi.org/10.1103/physreva.76.042319
14 https://doi.org/10.1103/physreva.86.023837
15 https://doi.org/10.1103/physreva.91.012336
16 https://doi.org/10.1103/physreva.91.033632
17 https://doi.org/10.1103/physreva.92.012320
18 https://doi.org/10.1103/physreva.93.062319
19 https://doi.org/10.1103/physrevb.77.180502
20 https://doi.org/10.1103/physrevb.78.195125
21 https://doi.org/10.1103/physrevb.79.060509
22 https://doi.org/10.1103/physrevb.86.184516
23 https://doi.org/10.1103/physrevb.89.075111
24 https://doi.org/10.1103/physrevb.90.115158
25 https://doi.org/10.1103/physrevb.90.245438
26 https://doi.org/10.1103/physrevlett.102.210403
27 https://doi.org/10.1103/physrevlett.103.033601
28 https://doi.org/10.1103/physrevlett.109.253606
29 https://doi.org/10.1103/physrevlett.110.117002
30 https://doi.org/10.1103/physrevlett.110.240404
31 https://doi.org/10.1103/physrevlett.111.056403
32 https://doi.org/10.1103/physrevlett.111.080502
33 https://doi.org/10.1103/physrevlett.111.110504
34 https://doi.org/10.1103/physrevlett.111.116402
35 https://doi.org/10.1103/physrevlett.112.126402
36 https://doi.org/10.1103/physrevlett.113.220502
37 https://doi.org/10.1103/physrevlett.114.070502
38 https://doi.org/10.1103/physrevlett.114.240501
39 https://doi.org/10.1103/physrevlett.116.016401
40 https://doi.org/10.1103/physrevlett.45.494
41 https://doi.org/10.1103/physrevlett.97.167001
42 https://doi.org/10.1103/physrevlett.99.187006
43 https://doi.org/10.1103/physrevx.4.031027
44 https://doi.org/10.1103/revmodphys.82.3045
45 https://doi.org/10.1103/revmodphys.83.1057
46 https://doi.org/10.1103/revmodphys.86.361
47 https://doi.org/10.1126/science.1231930
48 https://doi.org/10.1515/9781400846733
49 schema:datePublished 2017-12
50 schema:datePublishedReg 2017-12-01
51 schema:description One-dimensional time-reversal invariant topological superconducting wires of the symmetry class DIII exhibit exotic physics which can be exploited to realize the set of universal operations in topological quantum computing. However, the verification of DIII-class physics in conventional condensed matter materials is highly nontrivial due to realistic constraints. Here we propose a symmetry-protected hard-core boson simulator of the one-dimensional DIII topological superconductor. By using the developed dispersive dynamic modulation approach, not only the faithful simulation of this new type of spinful superconducting chains is achieved, but also a set of universal quantum gates can be realized with the computational basis formed by the degenerate ground states that are topologically protected against random local perturbations. Physical implementation of our scheme based on a Josephson quantum circuit is presented, where our detailed analysis pinpoints that this scheme is experimentally feasible with the state-of-the-art technology. Topological quantum matters have been recognized to have promising applications in realizing novel fault-tolerant quantum processes. In particular, one-dimensional time-reversal-symmetric (TRS) topological superconductors may be utilized to establish universal quantum gates with topological bases. However, how to realize them in conventional electronic systems is extremely challeging due to constraints of materials and coexisting complicated mechanisms. Here Hu, Zhao, Xue, and Wang propose an experimentally feasible scheme of hard-core boson quantum-simulator of such spinful TRS topological superconductors. Using a dispersive dynamic modulation approach, not only a faithful quantum simulation of TRS superconductor is achieved, but also a set of universal quantum gates can be constructed topologically. Physical implementation of this scheme is also elaborated based on superconducting quantum circuits, reavealing its feasibility with current technology.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree true
55 schema:isPartOf N3a015279ff364b39aef581c483d15a40
56 N4f100b81065c487d90ad6766cbe540ca
57 sg:journal.1285192
58 schema:name Realizing universal quantum gates with topological bases in quantum-simulated superconducting chains
59 schema:pagination 8
60 schema:productId N092871ec087c4e6e874fd53010a22f1c
61 N3bea24fa0271457c8a82c9db2e0a24ab
62 N6c24ce39dbc643d28777fe9f9b2fd7c6
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084130053
64 https://doi.org/10.1038/s41534-017-0009-3
65 schema:sdDatePublished 2019-04-10T15:47
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher Nb9fbe7adbbfa4100bb11f9980bd89997
68 schema:url https://www.nature.com/articles/s41534-017-0009-3
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N0552fb7a11fb4a84a74ecaa54a78ac9c rdf:first sg:person.012566661442.99
73 rdf:rest Ne346b1c71af04cb88ee7470ef3cf88f7
74 N092871ec087c4e6e874fd53010a22f1c schema:name doi
75 schema:value 10.1038/s41534-017-0009-3
76 rdf:type schema:PropertyValue
77 N3a015279ff364b39aef581c483d15a40 schema:issueNumber 1
78 rdf:type schema:PublicationIssue
79 N3bea24fa0271457c8a82c9db2e0a24ab schema:name readcube_id
80 schema:value 092fb65e9bf8a30e9865be90c365df4c194055cfee3cb455a67bb4779fe62a7c
81 rdf:type schema:PropertyValue
82 N4f100b81065c487d90ad6766cbe540ca schema:volumeNumber 3
83 rdf:type schema:PublicationVolume
84 N6c24ce39dbc643d28777fe9f9b2fd7c6 schema:name dimensions_id
85 schema:value pub.1084130053
86 rdf:type schema:PropertyValue
87 N6ff8b218510a4d14809d74d28d83d4be rdf:first sg:person.011374710011.80
88 rdf:rest rdf:nil
89 Nb9fbe7adbbfa4100bb11f9980bd89997 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 Ne346b1c71af04cb88ee7470ef3cf88f7 rdf:first sg:person.01143145444.53
92 rdf:rest N6ff8b218510a4d14809d74d28d83d4be
93 Nf3a2c51d85c240018c34b617e5482dba rdf:first sg:person.01257374044.32
94 rdf:rest N0552fb7a11fb4a84a74ecaa54a78ac9c
95 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
96 schema:name Physical Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
99 schema:name Condensed Matter Physics
100 rdf:type schema:DefinedTerm
101 sg:journal.1285192 schema:issn 2056-6387
102 schema:name npj Quantum Information
103 rdf:type schema:Periodical
104 sg:person.011374710011.80 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
105 schema:familyName Wang
106 schema:givenName Z. D.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011374710011.80
108 rdf:type schema:Person
109 sg:person.01143145444.53 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
110 schema:familyName Xue
111 schema:givenName Zheng-Yuan
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143145444.53
113 rdf:type schema:Person
114 sg:person.012566661442.99 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
115 schema:familyName Zhao
116 schema:givenName Y. X.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012566661442.99
118 rdf:type schema:Person
119 sg:person.01257374044.32 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
120 schema:familyName Hu
121 schema:givenName Yong
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257374044.32
123 rdf:type schema:Person
124 sg:pub.10.1038/nature10122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016787662
125 https://doi.org/10.1038/nature10122
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nphys2251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050351805
128 https://doi.org/10.1038/nphys2251
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/npjqi.2016.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027831640
131 https://doi.org/10.1038/npjqi.2016.15
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/srep05535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038340549
134 https://doi.org/10.1038/srep05535
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/srep08352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007310556
137 https://doi.org/10.1038/srep08352
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/andp.201200261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017263283
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.3149495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045986733
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1063/1.98041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058138147
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1070/1063-7869/44/10s/s29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036504866
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physreva.76.042319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015118427
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physreva.86.023837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032704464
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physreva.91.012336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000703377
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physreva.91.033632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006608823
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physreva.92.012320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060513679
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physreva.93.062319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060515902
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevb.77.180502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015287585
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevb.78.195125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011668608
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevb.79.060509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004762774
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevb.86.184516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026704291
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevb.89.075111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003107026
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevb.90.115158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053707950
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevb.90.245438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038061069
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.102.210403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755436
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.103.033601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039456470
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.109.253606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011261404
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.110.117002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009855677
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevlett.110.240404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048700261
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevlett.111.056403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003953500
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevlett.111.080502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037630875
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.111.110504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048522865
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.111.116402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007253706
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevlett.112.126402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038786960
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevlett.113.220502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052239889
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevlett.114.070502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049725709
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevlett.114.240501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012885227
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevlett.116.016401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764774
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevlett.45.494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060785679
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevlett.97.167001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032801644
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevlett.99.187006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030141595
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevx.4.031027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038187967
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/revmodphys.82.3045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004083979
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/revmodphys.83.1057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045115933
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/revmodphys.86.361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045896130
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1126/science.1231930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049747540
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1515/9781400846733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096911207
218 rdf:type schema:CreativeWork
219 https://www.grid.ac/institutes/grid.194645.b schema:alternateName University of Hong Kong
220 schema:name Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
221 Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, 510006, Guangzhou, China
222 School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, China
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...