Laser-induced hierarchical carbon patterns on polyimide substrates for flexible urea sensors View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Emil R. Mamleyev, Stefan Heissler, Alexei Nefedov, Peter G. Weidler, Nurdiana Nordin, Vladislav V. Kudryashov, Kerstin Länge, Neil MacKinnon, Swati Sharma

ABSTRACT

Thermochemical decomposition of organic materials under heat-treatment in the absence of oxygen, known as the pyrolysis process, is often employed to convert micro and nano patterned polymers into carbon structures, which are subsequently used as device components. Pyrolysis is performed at ≥900 °C, which entails substrate materials with a high thermal stability that excludes flexible, polymeric substrates. We use optimized laser radiation to pattern graphitic carbon structures onto commercially available polyimide (Kapton) sheets in the micrometer to millimeter scale by inducing a localized, rapid pyrolysis, for the fabrication of flexible devices. Resulting laser carbon films are electrically conductive and exhibit a high-surface area with a hierarchical porosity distribution along their cross-section. The material is obtained using various combinations of laser parameters and pyrolysis environment (oxygen-containing and inert). Extensive characterization of laser carbon is performed to understand the correlation between the material properties and laser parameters, primarily fluence and power. A photothermal carbonization mechanism based on the plume formation is proposed. Further, laser carbon is used for the fabrication of enzymatic, pH-based urea sensors using two approaches: (i) direct urease enzyme immobilization onto carbon and (ii) electrodeposition of an intermediate chitosan layer prior to urease immobilization. This flexible sensor is tested for quantitative urea detection down to 10−4 M concentrations, while a qualitative, color-indicative test is performed on a folded sensor placed inside a tube to demonstrate its compatibility with catheters. Laser carbon is suitable for a variety of other flexible electronics and sensors, can be conveniently integrated with an external circuitry, heating elements, and with other microfabrication techniques such as fluidic platforms. A collaborative international team led by Dr. Swati Sharma from Karlsruhe Institute of Technology, Germany demonstrates the first catheter-compatible, pH-based enzymatic urea sensor. The authors directly convert commercially available Kapton films into carbon using IR laser, and optimize the process for obtaining a high surface area material with hydrophilic functional groups for biosensor fabrication. These inexpensive flexible sensors are fabricated by enzyme absorption on to the carbon films, with or without an electrodeposited intermediate chitosan layer. They can be rolled-up to fit inside a catheter tube, and feature detection limit down to 10−4 M urea concentration that is 100 times lower than that in the blood serum of a healthy human. These sensors show promising applications as they are inexpensive, flexible, readily usable for in-vivo urea determination and easily extendable to multi- functional circuits. More... »

PAGES

2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41528-018-0047-8

DOI

http://dx.doi.org/10.1038/s41528-018-0047-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111014674


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mamleyev", 
        "givenName": "Emil R.", 
        "id": "sg:person.011567604447.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011567604447.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heissler", 
        "givenName": "Stefan", 
        "id": "sg:person.01167145022.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167145022.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nefedov", 
        "givenName": "Alexei", 
        "id": "sg:person.01247330360.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247330360.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weidler", 
        "givenName": "Peter G.", 
        "id": "sg:person.0756322724.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756322724.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nordin", 
        "givenName": "Nurdiana", 
        "id": "sg:person.01047202530.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047202530.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Nuclear Center of the Republic of Kazakhstan", 
          "id": "https://www.grid.ac/institutes/grid.443884.7", 
          "name": [
            "Institute of Nuclear Physics, Ibragimova St. 1, 050032, Almaty, Kazakhstan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudryashov", 
        "givenName": "Vladislav V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00e4nge", 
        "givenName": "Kerstin", 
        "id": "sg:person.01025546523.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025546523.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "MacKinnon", 
        "givenName": "Neil", 
        "id": "sg:person.013335077352.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013335077352.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharma", 
        "givenName": "Swati", 
        "id": "sg:person.01156422401.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156422401.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1001746331", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-2303-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001746331", 
          "https://doi.org/10.1007/978-1-4020-2303-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-2303-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001746331", 
          "https://doi.org/10.1007/978-1-4020-2303-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00539487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003643086", 
          "https://doi.org/10.1007/bf00539487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2016.03.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004052828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2016.03.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004052828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2016.03.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004052828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2016.03.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004052828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaap.2016.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006661104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b613872a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008946401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2014.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009375194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s1600576716017660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009666140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2008.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014009313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015305822", 
          "https://doi.org/10.1038/nnano.2013.46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13281-0_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015375156", 
          "https://doi.org/10.1007/978-3-642-13281-0_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13281-0_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015375156", 
          "https://doi.org/10.1007/978-3-642-13281-0_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aelm.201600185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018618231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/app.1985.070301116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022080564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1532-5415.2004.52508.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024494359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jconrel.2016.01.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025042742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bej.2008.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026422587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027773645", 
          "https://doi.org/10.1038/ncomms6714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10311-008-0168-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030734549", 
          "https://doi.org/10.1007/s10311-008-0168-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-9-646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031769310", 
          "https://doi.org/10.1186/1556-276x-9-646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s7071238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034064604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr030441b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035846457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr030441b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035846457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2015.05.089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036017485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1758-5082/2/2/022002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036870752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1758-5082/2/2/022002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036870752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2lc20586f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040135402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-4005(03)00544-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040621474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-4005(03)00544-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040621474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00332574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042358849", 
          "https://doi.org/10.1007/bf00332574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enzmictec.2003.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044218933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10408430500406265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046561149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0257-8972(01)01696-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046825305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0sm00124d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051895112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0sm00124d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051895112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac981367d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055075868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac981367d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055075868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsami.5b06225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055127836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/am2014376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055142041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm00043a005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055407301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja01269a023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055787826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0153520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055805294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0153520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055805294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma000389a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056174130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma000389a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056174130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.104624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057652192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.109300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057656867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.110152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057657717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.336012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057941428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3674165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057997548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4972476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058099141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.59.693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060451601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.59.693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060451601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1366/0003702011952163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065255560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1366/0003702011952163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065255560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-016-0009-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083776852", 
          "https://doi.org/10.1038/s41467-016-0009-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms14579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083862346", 
          "https://doi.org/10.1038/ncomms14579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acssensors.7b00066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085305153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2017.05.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085400436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ehf2.12188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086307545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsami.7b06727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090926841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijms18081702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090991158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bios.2017.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091495379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/mi8090285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091864604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.kint.2017.08.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099638802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bios.2018.02.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101018113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/2.0021808jes", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101153049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.analchem.8b04223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107325288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.analchem.8b04223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107325288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-34644-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107913019", 
          "https://doi.org/10.1038/s41598-018-34644-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ifetc.2018.8583942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110827145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ifetc.2018.8583942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110827145"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Thermochemical decomposition of organic materials under heat-treatment in the absence of oxygen, known as the pyrolysis process, is often employed to convert micro and nano patterned polymers into carbon structures, which are subsequently used as device components. Pyrolysis is performed at \u2265900 \u00b0C, which entails substrate materials with a high thermal stability that excludes flexible, polymeric substrates. We use optimized laser radiation to pattern graphitic carbon structures onto commercially available polyimide (Kapton) sheets in the micrometer to millimeter scale by inducing a localized, rapid pyrolysis, for the fabrication of flexible devices. Resulting laser carbon films are electrically conductive and exhibit a high-surface area with a hierarchical porosity distribution along their cross-section. The material is obtained using various combinations of laser parameters and pyrolysis environment (oxygen-containing and inert). Extensive characterization of laser carbon is performed to understand the correlation between the material properties and laser parameters, primarily fluence and power. A photothermal carbonization mechanism based on the plume formation is proposed. Further, laser carbon is used for the fabrication of enzymatic, pH-based urea sensors using two approaches: (i) direct urease enzyme immobilization onto carbon and (ii) electrodeposition of an intermediate chitosan layer prior to urease immobilization. This flexible sensor is tested for quantitative urea detection down to 10\u22124 M concentrations, while a qualitative, color-indicative test is performed on a folded sensor placed inside a tube to demonstrate its compatibility with catheters. Laser carbon is suitable for a variety of other flexible electronics and sensors, can be conveniently integrated with an external circuitry, heating elements, and with other microfabrication techniques such as fluidic platforms. A collaborative international team led by Dr. Swati Sharma from Karlsruhe Institute of Technology, Germany demonstrates the first catheter-compatible, pH-based enzymatic urea sensor. The authors directly convert commercially available Kapton films into carbon using IR laser, and optimize the process for obtaining a high surface area material with hydrophilic functional groups for biosensor fabrication. These inexpensive flexible sensors are fabricated by enzyme absorption on to the carbon films, with or without an electrodeposited intermediate chitosan layer. They can be rolled-up to fit inside a catheter tube, and feature detection limit down to 10\u22124 M urea concentration that is 100 times lower than that in the blood serum of a healthy human. These sensors show promising applications as they are inexpensive, flexible, readily usable for in-vivo urea determination and easily extendable to multi- functional circuits.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41528-018-0047-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1290455", 
        "issn": [
          "2397-4621"
        ], 
        "name": "npj Flexible Electronics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Laser-induced hierarchical carbon patterns on polyimide substrates for flexible urea sensors", 
    "pagination": "2", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "563df3bb244acbcf605054c880436da10d9bf91eccf6013b7eaa24da92136e16"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41528-018-0047-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111014674"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41528-018-0047-8", 
      "https://app.dimensions.ai/details/publication/pub.1111014674"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000315_0000000315/records_6319_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41528-018-0047-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41528-018-0047-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41528-018-0047-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41528-018-0047-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41528-018-0047-8'


 

This table displays all metadata directly associated to this object as RDF triples.

309 TRIPLES      21 PREDICATES      87 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41528-018-0047-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N0a26891211884987bd6aad1f746652e4
4 schema:citation sg:pub.10.1007/978-1-4020-2303-3
5 sg:pub.10.1007/978-3-642-13281-0_1
6 sg:pub.10.1007/bf00332574
7 sg:pub.10.1007/bf00539487
8 sg:pub.10.1007/s10311-008-0168-8
9 sg:pub.10.1038/ncomms14579
10 sg:pub.10.1038/ncomms6714
11 sg:pub.10.1038/nnano.2013.46
12 sg:pub.10.1038/s41467-016-0009-6
13 sg:pub.10.1038/s41598-018-34644-9
14 sg:pub.10.1186/1556-276x-9-646
15 https://app.dimensions.ai/details/publication/pub.1001746331
16 https://doi.org/10.1002/aelm.201600185
17 https://doi.org/10.1002/app.1985.070301116
18 https://doi.org/10.1002/ehf2.12188
19 https://doi.org/10.1016/j.apsusc.2015.05.089
20 https://doi.org/10.1016/j.bej.2008.07.004
21 https://doi.org/10.1016/j.bios.2017.09.005
22 https://doi.org/10.1016/j.bios.2018.02.031
23 https://doi.org/10.1016/j.carbon.2014.11.017
24 https://doi.org/10.1016/j.carbon.2016.03.050
25 https://doi.org/10.1016/j.enzmictec.2003.12.013
26 https://doi.org/10.1016/j.jaap.2016.08.007
27 https://doi.org/10.1016/j.jconrel.2016.01.037
28 https://doi.org/10.1016/j.kint.2017.08.033
29 https://doi.org/10.1016/j.snb.2008.04.025
30 https://doi.org/10.1016/j.snb.2017.05.048
31 https://doi.org/10.1016/s0257-8972(01)01696-6
32 https://doi.org/10.1016/s0925-4005(03)00544-6
33 https://doi.org/10.1021/ac981367d
34 https://doi.org/10.1021/acs.analchem.8b04223
35 https://doi.org/10.1021/acsami.5b06225
36 https://doi.org/10.1021/acsami.7b06727
37 https://doi.org/10.1021/acssensors.7b00066
38 https://doi.org/10.1021/am2014376
39 https://doi.org/10.1021/cm00043a005
40 https://doi.org/10.1021/cr030441b
41 https://doi.org/10.1021/ja01269a023
42 https://doi.org/10.1021/ja0153520
43 https://doi.org/10.1021/ma000389a
44 https://doi.org/10.1039/b613872a
45 https://doi.org/10.1039/c0sm00124d
46 https://doi.org/10.1039/c2lc20586f
47 https://doi.org/10.1063/1.104624
48 https://doi.org/10.1063/1.109300
49 https://doi.org/10.1063/1.110152
50 https://doi.org/10.1063/1.336012
51 https://doi.org/10.1063/1.3674165
52 https://doi.org/10.1063/1.4972476
53 https://doi.org/10.1080/10408430500406265
54 https://doi.org/10.1088/1758-5082/2/2/022002
55 https://doi.org/10.1103/physrev.59.693
56 https://doi.org/10.1107/s1600576716017660
57 https://doi.org/10.1109/ifetc.2018.8583942
58 https://doi.org/10.1111/j.1532-5415.2004.52508.x
59 https://doi.org/10.1149/2.0021808jes
60 https://doi.org/10.1366/0003702011952163
61 https://doi.org/10.3390/ijms18081702
62 https://doi.org/10.3390/mi8090285
63 https://doi.org/10.3390/s7071238
64 schema:datePublished 2019-12
65 schema:datePublishedReg 2019-12-01
66 schema:description Thermochemical decomposition of organic materials under heat-treatment in the absence of oxygen, known as the pyrolysis process, is often employed to convert micro and nano patterned polymers into carbon structures, which are subsequently used as device components. Pyrolysis is performed at ≥900 °C, which entails substrate materials with a high thermal stability that excludes flexible, polymeric substrates. We use optimized laser radiation to pattern graphitic carbon structures onto commercially available polyimide (Kapton) sheets in the micrometer to millimeter scale by inducing a localized, rapid pyrolysis, for the fabrication of flexible devices. Resulting laser carbon films are electrically conductive and exhibit a high-surface area with a hierarchical porosity distribution along their cross-section. The material is obtained using various combinations of laser parameters and pyrolysis environment (oxygen-containing and inert). Extensive characterization of laser carbon is performed to understand the correlation between the material properties and laser parameters, primarily fluence and power. A photothermal carbonization mechanism based on the plume formation is proposed. Further, laser carbon is used for the fabrication of enzymatic, pH-based urea sensors using two approaches: (i) direct urease enzyme immobilization onto carbon and (ii) electrodeposition of an intermediate chitosan layer prior to urease immobilization. This flexible sensor is tested for quantitative urea detection down to 10−4 M concentrations, while a qualitative, color-indicative test is performed on a folded sensor placed inside a tube to demonstrate its compatibility with catheters. Laser carbon is suitable for a variety of other flexible electronics and sensors, can be conveniently integrated with an external circuitry, heating elements, and with other microfabrication techniques such as fluidic platforms. A collaborative international team led by Dr. Swati Sharma from Karlsruhe Institute of Technology, Germany demonstrates the first catheter-compatible, pH-based enzymatic urea sensor. The authors directly convert commercially available Kapton films into carbon using IR laser, and optimize the process for obtaining a high surface area material with hydrophilic functional groups for biosensor fabrication. These inexpensive flexible sensors are fabricated by enzyme absorption on to the carbon films, with or without an electrodeposited intermediate chitosan layer. They can be rolled-up to fit inside a catheter tube, and feature detection limit down to 10−4 M urea concentration that is 100 times lower than that in the blood serum of a healthy human. These sensors show promising applications as they are inexpensive, flexible, readily usable for in-vivo urea determination and easily extendable to multi- functional circuits.
67 schema:genre research_article
68 schema:inLanguage en
69 schema:isAccessibleForFree true
70 schema:isPartOf N2df99a1654c947f8b7b82dd5cf95091e
71 N5b784221872b450d8cf35a934abcd4eb
72 sg:journal.1290455
73 schema:name Laser-induced hierarchical carbon patterns on polyimide substrates for flexible urea sensors
74 schema:pagination 2
75 schema:productId N16bc8e14beea4e75a7959a3ef278a0ce
76 N2a84d434ed6846a585ad059b00c08b12
77 N835e06db7622400db1caf79ac32589fd
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111014674
79 https://doi.org/10.1038/s41528-018-0047-8
80 schema:sdDatePublished 2019-04-11T08:37
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Nc1dc2f1df7764b7ebd0d4cad6fdecc17
83 schema:url https://www.nature.com/articles/s41528-018-0047-8
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N0a26891211884987bd6aad1f746652e4 rdf:first sg:person.011567604447.37
88 rdf:rest Ncd287375631c408a84f0a157e7d43b09
89 N10b5dacfe8e5484d858f6170364a202f rdf:first sg:person.01247330360.21
90 rdf:rest Nf5190e4c9c604d19a014d66a2decc052
91 N16bc8e14beea4e75a7959a3ef278a0ce schema:name dimensions_id
92 schema:value pub.1111014674
93 rdf:type schema:PropertyValue
94 N1863d2690bee4f9696aa91920b7a779e rdf:first sg:person.01156422401.68
95 rdf:rest rdf:nil
96 N1e0794519f96460d92b5714cab92dd3c schema:affiliation https://www.grid.ac/institutes/grid.443884.7
97 schema:familyName Kudryashov
98 schema:givenName Vladislav V.
99 rdf:type schema:Person
100 N2a84d434ed6846a585ad059b00c08b12 schema:name readcube_id
101 schema:value 563df3bb244acbcf605054c880436da10d9bf91eccf6013b7eaa24da92136e16
102 rdf:type schema:PropertyValue
103 N2c6733ad9c1a41ed9edd42782d068b22 rdf:first sg:person.013335077352.92
104 rdf:rest N1863d2690bee4f9696aa91920b7a779e
105 N2df99a1654c947f8b7b82dd5cf95091e schema:volumeNumber 3
106 rdf:type schema:PublicationVolume
107 N5b784221872b450d8cf35a934abcd4eb schema:issueNumber 1
108 rdf:type schema:PublicationIssue
109 N835e06db7622400db1caf79ac32589fd schema:name doi
110 schema:value 10.1038/s41528-018-0047-8
111 rdf:type schema:PropertyValue
112 N9fd67b947bf24a92b6f000afcd72090e rdf:first sg:person.01025546523.43
113 rdf:rest N2c6733ad9c1a41ed9edd42782d068b22
114 Na226f983095d44e395d281199cf268ca rdf:first N1e0794519f96460d92b5714cab92dd3c
115 rdf:rest N9fd67b947bf24a92b6f000afcd72090e
116 Nc1dc2f1df7764b7ebd0d4cad6fdecc17 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 Ncd287375631c408a84f0a157e7d43b09 rdf:first sg:person.01167145022.27
119 rdf:rest N10b5dacfe8e5484d858f6170364a202f
120 Nf5190e4c9c604d19a014d66a2decc052 rdf:first sg:person.0756322724.63
121 rdf:rest Nf7df5b5f1f0145a8986c4db35aeb1921
122 Nf7df5b5f1f0145a8986c4db35aeb1921 rdf:first sg:person.01047202530.04
123 rdf:rest Na226f983095d44e395d281199cf268ca
124 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
125 schema:name Engineering
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
128 schema:name Materials Engineering
129 rdf:type schema:DefinedTerm
130 sg:journal.1290455 schema:issn 2397-4621
131 schema:name npj Flexible Electronics
132 rdf:type schema:Periodical
133 sg:person.01025546523.43 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
134 schema:familyName Länge
135 schema:givenName Kerstin
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025546523.43
137 rdf:type schema:Person
138 sg:person.01047202530.04 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
139 schema:familyName Nordin
140 schema:givenName Nurdiana
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047202530.04
142 rdf:type schema:Person
143 sg:person.01156422401.68 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
144 schema:familyName Sharma
145 schema:givenName Swati
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156422401.68
147 rdf:type schema:Person
148 sg:person.011567604447.37 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
149 schema:familyName Mamleyev
150 schema:givenName Emil R.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011567604447.37
152 rdf:type schema:Person
153 sg:person.01167145022.27 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
154 schema:familyName Heissler
155 schema:givenName Stefan
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167145022.27
157 rdf:type schema:Person
158 sg:person.01247330360.21 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
159 schema:familyName Nefedov
160 schema:givenName Alexei
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247330360.21
162 rdf:type schema:Person
163 sg:person.013335077352.92 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
164 schema:familyName MacKinnon
165 schema:givenName Neil
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013335077352.92
167 rdf:type schema:Person
168 sg:person.0756322724.63 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
169 schema:familyName Weidler
170 schema:givenName Peter G.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756322724.63
172 rdf:type schema:Person
173 sg:pub.10.1007/978-1-4020-2303-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001746331
174 https://doi.org/10.1007/978-1-4020-2303-3
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/978-3-642-13281-0_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015375156
177 https://doi.org/10.1007/978-3-642-13281-0_1
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/bf00332574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042358849
180 https://doi.org/10.1007/bf00332574
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/bf00539487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003643086
183 https://doi.org/10.1007/bf00539487
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s10311-008-0168-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030734549
186 https://doi.org/10.1007/s10311-008-0168-8
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/ncomms14579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083862346
189 https://doi.org/10.1038/ncomms14579
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/ncomms6714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027773645
192 https://doi.org/10.1038/ncomms6714
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nnano.2013.46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015305822
195 https://doi.org/10.1038/nnano.2013.46
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/s41467-016-0009-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083776852
198 https://doi.org/10.1038/s41467-016-0009-6
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/s41598-018-34644-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107913019
201 https://doi.org/10.1038/s41598-018-34644-9
202 rdf:type schema:CreativeWork
203 sg:pub.10.1186/1556-276x-9-646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031769310
204 https://doi.org/10.1186/1556-276x-9-646
205 rdf:type schema:CreativeWork
206 https://app.dimensions.ai/details/publication/pub.1001746331 schema:CreativeWork
207 https://doi.org/10.1002/aelm.201600185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018618231
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1002/app.1985.070301116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022080564
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1002/ehf2.12188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086307545
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.apsusc.2015.05.089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036017485
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.bej.2008.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026422587
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.bios.2017.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091495379
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.bios.2018.02.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101018113
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.carbon.2014.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009375194
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/j.carbon.2016.03.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004052828
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/j.enzmictec.2003.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044218933
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/j.jaap.2016.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006661104
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.jconrel.2016.01.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025042742
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.kint.2017.08.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099638802
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.snb.2008.04.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014009313
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.snb.2017.05.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085400436
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/s0257-8972(01)01696-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046825305
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/s0925-4005(03)00544-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040621474
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1021/ac981367d schema:sameAs https://app.dimensions.ai/details/publication/pub.1055075868
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1021/acs.analchem.8b04223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107325288
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1021/acsami.5b06225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055127836
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1021/acsami.7b06727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090926841
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1021/acssensors.7b00066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085305153
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1021/am2014376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055142041
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1021/cm00043a005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055407301
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1021/cr030441b schema:sameAs https://app.dimensions.ai/details/publication/pub.1035846457
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1021/ja01269a023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055787826
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1021/ja0153520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055805294
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1021/ma000389a schema:sameAs https://app.dimensions.ai/details/publication/pub.1056174130
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1039/b613872a schema:sameAs https://app.dimensions.ai/details/publication/pub.1008946401
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1039/c0sm00124d schema:sameAs https://app.dimensions.ai/details/publication/pub.1051895112
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1039/c2lc20586f schema:sameAs https://app.dimensions.ai/details/publication/pub.1040135402
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1063/1.104624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057652192
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1063/1.109300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057656867
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1063/1.110152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057657717
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1063/1.336012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057941428
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1063/1.3674165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057997548
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1063/1.4972476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058099141
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1080/10408430500406265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046561149
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1088/1758-5082/2/2/022002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036870752
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1103/physrev.59.693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060451601
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1107/s1600576716017660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009666140
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1109/ifetc.2018.8583942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110827145
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1111/j.1532-5415.2004.52508.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024494359
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1149/2.0021808jes schema:sameAs https://app.dimensions.ai/details/publication/pub.1101153049
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1366/0003702011952163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065255560
296 rdf:type schema:CreativeWork
297 https://doi.org/10.3390/ijms18081702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090991158
298 rdf:type schema:CreativeWork
299 https://doi.org/10.3390/mi8090285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091864604
300 rdf:type schema:CreativeWork
301 https://doi.org/10.3390/s7071238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034064604
302 rdf:type schema:CreativeWork
303 https://www.grid.ac/institutes/grid.443884.7 schema:alternateName National Nuclear Center of the Republic of Kazakhstan
304 schema:name Institute of Nuclear Physics, Ibragimova St. 1, 050032, Almaty, Kazakhstan
305 rdf:type schema:Organization
306 https://www.grid.ac/institutes/grid.7892.4 schema:alternateName Karlsruhe Institute of Technology
307 schema:name Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
308 Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
309 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...