Theoretical prediction of high melting temperature for a Mo–Ru–Ta–W HCP multiprincipal element alloy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-01-04

AUTHORS

Qi-Jun Hong, Jan Schroers, Douglas Hofmann, Stefano Curtarolo, Mark Asta, Axel van de Walle

ABSTRACT

While rhenium is an ideal material for rapid thermal cycling applications under high temperatures, such as rocket engine nozzles, its high cost limits its widespread use and prompts an exploration of viable cost-effective substitutes. In prior work, we identified a promising pool of candidate substitute alloys consisting of Mo, Ru, Ta, and W. In this work we demonstrate, based on density functional theory melting temperature calculations, that one of the candidates, Mo0.292Ru0.555Ta0.031W0.122, exhibits a high melting temperature (around 2626 K), thus supporting its use in high-temperature applications. More... »

PAGES

1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41524-020-00473-6

DOI

http://dx.doi.org/10.1038/s41524-020-00473-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1134295940


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Engineering, Brown University, 02912, Providence, RI, USA", 
          "id": "http://www.grid.ac/institutes/grid.40263.33", 
          "name": [
            "School of Engineering, Brown University, 02912, Providence, RI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hong", 
        "givenName": "Qi-Jun", 
        "id": "sg:person.01025463057.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025463057.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schroers", 
        "givenName": "Jan", 
        "id": "sg:person.01145527322.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145527322.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., 91109, Pasadena, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., 91109, Pasadena, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hofmann", 
        "givenName": "Douglas", 
        "id": "sg:person.01270405367.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270405367.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science and Center for Autonomous Materials Design, Duke University, 27708, Durham, NC, USA", 
          "id": "http://www.grid.ac/institutes/grid.26009.3d", 
          "name": [
            "Department of Mechanical Engineering and Materials Science and Center for Autonomous Materials Design, Duke University, 27708, Durham, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Curtarolo", 
        "givenName": "Stefano", 
        "id": "sg:person.014320332223.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014320332223.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Sciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Materials Science and Engineering, University of California, 94720, Berkeley, CA, USA", 
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Asta", 
        "givenName": "Mark", 
        "id": "sg:person.0607126274.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607126274.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Engineering, Brown University, 02912, Providence, RI, USA", 
          "id": "http://www.grid.ac/institutes/grid.40263.33", 
          "name": [
            "School of Engineering, Brown University, 02912, Providence, RI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van de Walle", 
        "givenName": "Axel", 
        "id": "sg:person.010772077773.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010772077773.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41524-019-0192-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1114298109", 
          "https://doi.org/10.1038/s41524-019-0192-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep37962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032237906", 
          "https://doi.org/10.1038/srep37962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2019.179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1117026656", 
          "https://doi.org/10.1557/jmr.2019.179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-010-0012-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004173839", 
          "https://doi.org/10.1007/s11837-010-0012-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-01-04", 
    "datePublishedReg": "2021-01-04", 
    "description": "While rhenium is an ideal material for rapid thermal cycling applications under high temperatures, such as rocket engine nozzles, its high cost limits its widespread use and prompts an exploration of viable cost-effective substitutes. In prior work, we identified a promising pool of candidate substitute alloys consisting of Mo, Ru, Ta, and W. In this work we demonstrate, based on density functional theory melting temperature calculations, that one of the candidates, Mo0.292Ru0.555Ta0.031W0.122, exhibits a high melting temperature (around 2626 K), thus supporting its use in high-temperature applications.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41524-020-00473-6", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5540022", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7568729", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1285194", 
        "issn": [
          "2057-3960"
        ], 
        "name": "npj Computational Materials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "high melting temperature", 
      "thermal cycling applications", 
      "high temperature applications", 
      "multiprincipal element alloys", 
      "rocket engine nozzle", 
      "engine nozzle", 
      "element alloys", 
      "melting temperature", 
      "cycling applications", 
      "temperature calculations", 
      "ideal material", 
      "Mo-Ru", 
      "high temperature", 
      "cost-effective substitute", 
      "temperature", 
      "theoretical predictions", 
      "nozzle", 
      "high cost", 
      "alloy", 
      "candidate substitute", 
      "applications", 
      "density functional theory", 
      "materials", 
      "substitute", 
      "work", 
      "functional theory", 
      "Ta", 
      "cost", 
      "prediction", 
      "calculations", 
      "widespread use", 
      "rhenium", 
      "prior work", 
      "Mo", 
      "Ru", 
      "use", 
      "candidates", 
      "theory", 
      "promising pool", 
      "exploration", 
      "pool"
    ], 
    "name": "Theoretical prediction of high melting temperature for a Mo\u2013Ru\u2013Ta\u2013W HCP multiprincipal element alloy", 
    "pagination": "1", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1134295940"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41524-020-00473-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41524-020-00473-6", 
      "https://app.dimensions.ai/details/publication/pub.1134295940"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_913.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41524-020-00473-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41524-020-00473-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41524-020-00473-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41524-020-00473-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41524-020-00473-6'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      69 URIs      57 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41524-020-00473-6 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nbb5b1ba6378d4b0b8c8ec95906461ab0
4 schema:citation sg:pub.10.1007/s11837-010-0012-z
5 sg:pub.10.1038/s41524-019-0192-1
6 sg:pub.10.1038/srep37962
7 sg:pub.10.1557/jmr.2019.179
8 schema:datePublished 2021-01-04
9 schema:datePublishedReg 2021-01-04
10 schema:description While rhenium is an ideal material for rapid thermal cycling applications under high temperatures, such as rocket engine nozzles, its high cost limits its widespread use and prompts an exploration of viable cost-effective substitutes. In prior work, we identified a promising pool of candidate substitute alloys consisting of Mo, Ru, Ta, and W. In this work we demonstrate, based on density functional theory melting temperature calculations, that one of the candidates, Mo0.292Ru0.555Ta0.031W0.122, exhibits a high melting temperature (around 2626 K), thus supporting its use in high-temperature applications.
11 schema:genre article
12 schema:isAccessibleForFree true
13 schema:isPartOf N433bdf70307a4394afcb9c63b3853ed9
14 Nc5cf96b3108c4442811e4e13f62b569c
15 sg:journal.1285194
16 schema:keywords Mo
17 Mo-Ru
18 Ru
19 Ta
20 alloy
21 applications
22 calculations
23 candidate substitute
24 candidates
25 cost
26 cost-effective substitute
27 cycling applications
28 density functional theory
29 element alloys
30 engine nozzle
31 exploration
32 functional theory
33 high cost
34 high melting temperature
35 high temperature
36 high temperature applications
37 ideal material
38 materials
39 melting temperature
40 multiprincipal element alloys
41 nozzle
42 pool
43 prediction
44 prior work
45 promising pool
46 rhenium
47 rocket engine nozzle
48 substitute
49 temperature
50 temperature calculations
51 theoretical predictions
52 theory
53 thermal cycling applications
54 use
55 widespread use
56 work
57 schema:name Theoretical prediction of high melting temperature for a Mo–Ru–Ta–W HCP multiprincipal element alloy
58 schema:pagination 1
59 schema:productId N32a10c548cfd453c90c28327cdff3992
60 Nb72315220cb44a97ade24b3fd58e73ac
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134295940
62 https://doi.org/10.1038/s41524-020-00473-6
63 schema:sdDatePublished 2022-09-02T16:07
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Nbaef6ed4e7ef4dfaa2cdf7a821634c48
66 schema:url https://doi.org/10.1038/s41524-020-00473-6
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N32a10c548cfd453c90c28327cdff3992 schema:name dimensions_id
71 schema:value pub.1134295940
72 rdf:type schema:PropertyValue
73 N433bdf70307a4394afcb9c63b3853ed9 schema:issueNumber 1
74 rdf:type schema:PublicationIssue
75 N4ee043ac47044d75b13a6d2d493c877a rdf:first sg:person.01145527322.19
76 rdf:rest N8f019397380d48439c6f7df8f95ee5ed
77 N83d6089cf0c1474ebcfef5eeaa88b0b0 rdf:first sg:person.010772077773.31
78 rdf:rest rdf:nil
79 N8f019397380d48439c6f7df8f95ee5ed rdf:first sg:person.01270405367.37
80 rdf:rest Ndae0fcac5dea48b7a463e0292ee55ba3
81 Nb72315220cb44a97ade24b3fd58e73ac schema:name doi
82 schema:value 10.1038/s41524-020-00473-6
83 rdf:type schema:PropertyValue
84 Nbaef6ed4e7ef4dfaa2cdf7a821634c48 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nbb5b1ba6378d4b0b8c8ec95906461ab0 rdf:first sg:person.01025463057.00
87 rdf:rest N4ee043ac47044d75b13a6d2d493c877a
88 Nc01bc3af91c644438dc37c4c42f0ccc0 rdf:first sg:person.0607126274.13
89 rdf:rest N83d6089cf0c1474ebcfef5eeaa88b0b0
90 Nc5cf96b3108c4442811e4e13f62b569c schema:volumeNumber 7
91 rdf:type schema:PublicationVolume
92 Ndae0fcac5dea48b7a463e0292ee55ba3 rdf:first sg:person.014320332223.10
93 rdf:rest Nc01bc3af91c644438dc37c4c42f0ccc0
94 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
95 schema:name Engineering
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
98 schema:name Materials Engineering
99 rdf:type schema:DefinedTerm
100 sg:grant.5540022 http://pending.schema.org/fundedItem sg:pub.10.1038/s41524-020-00473-6
101 rdf:type schema:MonetaryGrant
102 sg:grant.7568729 http://pending.schema.org/fundedItem sg:pub.10.1038/s41524-020-00473-6
103 rdf:type schema:MonetaryGrant
104 sg:journal.1285194 schema:issn 2057-3960
105 schema:name npj Computational Materials
106 schema:publisher Springer Nature
107 rdf:type schema:Periodical
108 sg:person.01025463057.00 schema:affiliation grid-institutes:grid.40263.33
109 schema:familyName Hong
110 schema:givenName Qi-Jun
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025463057.00
112 rdf:type schema:Person
113 sg:person.010772077773.31 schema:affiliation grid-institutes:grid.40263.33
114 schema:familyName van de Walle
115 schema:givenName Axel
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010772077773.31
117 rdf:type schema:Person
118 sg:person.01145527322.19 schema:affiliation grid-institutes:grid.47100.32
119 schema:familyName Schroers
120 schema:givenName Jan
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145527322.19
122 rdf:type schema:Person
123 sg:person.01270405367.37 schema:affiliation grid-institutes:grid.20861.3d
124 schema:familyName Hofmann
125 schema:givenName Douglas
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270405367.37
127 rdf:type schema:Person
128 sg:person.014320332223.10 schema:affiliation grid-institutes:grid.26009.3d
129 schema:familyName Curtarolo
130 schema:givenName Stefano
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014320332223.10
132 rdf:type schema:Person
133 sg:person.0607126274.13 schema:affiliation grid-institutes:grid.184769.5
134 schema:familyName Asta
135 schema:givenName Mark
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607126274.13
137 rdf:type schema:Person
138 sg:pub.10.1007/s11837-010-0012-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1004173839
139 https://doi.org/10.1007/s11837-010-0012-z
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/s41524-019-0192-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114298109
142 https://doi.org/10.1038/s41524-019-0192-1
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/srep37962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032237906
145 https://doi.org/10.1038/srep37962
146 rdf:type schema:CreativeWork
147 sg:pub.10.1557/jmr.2019.179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117026656
148 https://doi.org/10.1557/jmr.2019.179
149 rdf:type schema:CreativeWork
150 grid-institutes:grid.184769.5 schema:alternateName Materials Sciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA
151 schema:name Department of Materials Science and Engineering, University of California, 94720, Berkeley, CA, USA
152 Materials Sciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA
153 rdf:type schema:Organization
154 grid-institutes:grid.20861.3d schema:alternateName NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., 91109, Pasadena, CA, USA
155 schema:name NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., 91109, Pasadena, CA, USA
156 rdf:type schema:Organization
157 grid-institutes:grid.26009.3d schema:alternateName Department of Mechanical Engineering and Materials Science and Center for Autonomous Materials Design, Duke University, 27708, Durham, NC, USA
158 schema:name Department of Mechanical Engineering and Materials Science and Center for Autonomous Materials Design, Duke University, 27708, Durham, NC, USA
159 rdf:type schema:Organization
160 grid-institutes:grid.40263.33 schema:alternateName School of Engineering, Brown University, 02912, Providence, RI, USA
161 schema:name School of Engineering, Brown University, 02912, Providence, RI, USA
162 rdf:type schema:Organization
163 grid-institutes:grid.47100.32 schema:alternateName Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA
164 schema:name Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...