A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-07-19

AUTHORS

Ruguang Ma, Gaoxin Lin, Yao Zhou, Qian Liu, Tao Zhang, Guangcun Shan, Minghui Yang, Jiacheng Wang

ABSTRACT

The sluggish kinetics of Oxygen Reduction Reaction (ORR) at the cathode in proton exchange membrane fuel cells or metal-air batteries requires highly effective and stable electrocatalysts to boost the reaction. The low abundance and high price of Pt-based electrocatalysts hamper the widespread application of proton exchange membrane fuel cells and metal-air batteries. As promising alternatives, metal-free carbon materials, especially upon doping heteroatoms or creating defects demonstrated excellent ORR activity, which is as efficient as or even superior to commercial platinum on carbon. Significant progress on the development of advanced carbon materials as highly stable and durable catalysts has been achieved, but the catalytic mechanisms of these materials still remain undistinguished. In present review, we summarized the up-to-date progress in the studies of carbon materials, and emphasized on the combination of experiment and theory to clarify the underlying mechanisms of these materials. At last, we proposed the perspectives on the proper strategies of elucidating the mechanisms of carbon materials as electrocatalysts towards ORR. More... »

PAGES

78

References to SciGraph publications

  • 2014-09-07. Graphene nanoribbon heterojunctions in NATURE NANOTECHNOLOGY
  • 2016-01-14. Novel synthesis of N-doped graphene as an efficient electrocatalyst towards oxygen reduction in NANO RESEARCH
  • 2017-09-27. Creation of Triple Hierarchical Micro-Meso-Macroporous N-doped Carbon Shells with Hollow Cores Toward the Electrocatalytic Oxygen Reduction Reaction in NANO-MICRO LETTERS
  • 2017-12-27. Facile Synthesis of N-Doped Graphene-Like Carbon Nanoflakes as Efficient and Stable Electrocatalysts for the Oxygen Reduction Reaction in NANO-MICRO LETTERS
  • 2014-05-30. Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction in SCIENTIFIC REPORTS
  • 2016-09-13. Carbon-based metal-free catalysts in NATURE REVIEWS MATERIALS
  • 2013-06-05. Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction in SCIENTIFIC REPORTS
  • 2016-10-31. In situ electrochemical quantification of active sites in Fe–N/C non-precious metal catalysts in NATURE COMMUNICATIONS
  • 2012-06-06. Electrocatalyst approaches and challenges for automotive fuel cells in NATURE
  • 1995-07. Why gold is the noblest of all the metals in NATURE
  • 2015-03-20. Magnesiothermic synthesis of sulfur-doped graphene as an efficient metal-free electrocatalyst for oxygen reduction in SCIENTIFIC REPORTS
  • 2011-06-12. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries in NATURE CHEMISTRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41524-019-0210-3

    DOI

    http://dx.doi.org/10.1038/s41524-019-0210-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1118097797


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Inorganic Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.410726.6", 
              "name": [
                "State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, 200050, Shanghai, China", 
                "Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ma", 
            "givenName": "Ruguang", 
            "id": "sg:person.011052031513.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011052031513.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Chinese Academy of Sciences, 19A Yuquan Rd, 100049, Beijing, Shijingshan District, China", 
              "id": "http://www.grid.ac/institutes/grid.410726.6", 
              "name": [
                "State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, 200050, Shanghai, China", 
                "University of Chinese Academy of Sciences, 19A Yuquan Rd, 100049, Beijing, Shijingshan District, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Gaoxin", 
            "id": "sg:person.016051652302.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016051652302.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, 200050, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.454856.e", 
              "name": [
                "State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, 200050, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Yao", 
            "id": "sg:person.014165601401.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014165601401.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, 200050, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.454856.e", 
              "name": [
                "State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, 200050, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Qian", 
            "id": "sg:person.013320366777.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013320366777.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, 200050, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.454856.e", 
              "name": [
                "State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, 200050, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Tao", 
            "id": "sg:person.011436056757.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011436056757.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Instrumentation Science and Opto-electronics Engineering, Beihang University, 100191, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.64939.31", 
              "name": [
                "School of Instrumentation Science and Opto-electronics Engineering, Beihang University, 100191, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shan", 
            "givenName": "Guangcun", 
            "id": "sg:person.0660762314.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660762314.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201, Ningbo, China", 
              "id": "http://www.grid.ac/institutes/grid.458492.6", 
              "name": [
                "Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201, Ningbo, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Minghui", 
            "id": "sg:person.01175360517.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175360517.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.410726.6", 
              "name": [
                "State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, 200050, Shanghai, China", 
                "Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Jiacheng", 
            "id": "sg:person.01000207404.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000207404.23"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s40820-017-0181-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100076937", 
              "https://doi.org/10.1007/s40820-017-0181-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.1069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045401156", 
              "https://doi.org/10.1038/nchem.1069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013935373", 
              "https://doi.org/10.1038/nature11115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12274-015-0960-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007437610", 
              "https://doi.org/10.1007/s12274-015-0960-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/natrevmats.2016.64", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018712965", 
              "https://doi.org/10.1038/natrevmats.2016.64"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014287703", 
              "https://doi.org/10.1038/nnano.2014.184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep05130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015159108", 
              "https://doi.org/10.1038/srep05130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037876832", 
              "https://doi.org/10.1038/ncomms13285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40820-017-0157-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091925210", 
              "https://doi.org/10.1007/s40820-017-0157-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep09304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022557365", 
              "https://doi.org/10.1038/srep09304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/376238a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004659378", 
              "https://doi.org/10.1038/376238a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep01810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023371470", 
              "https://doi.org/10.1038/srep01810"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-07-19", 
        "datePublishedReg": "2019-07-19", 
        "description": "The sluggish kinetics of Oxygen Reduction Reaction (ORR) at the cathode in proton exchange membrane fuel cells or metal-air batteries requires highly effective and stable electrocatalysts to boost the reaction. The low abundance and high price of Pt-based electrocatalysts hamper the widespread application of proton exchange membrane fuel cells and metal-air batteries. As promising alternatives, metal-free carbon materials, especially upon doping heteroatoms or creating defects demonstrated excellent ORR activity, which is as efficient as or even superior to commercial platinum on carbon. Significant progress on the development of advanced carbon materials as highly stable and durable catalysts has been achieved, but the catalytic mechanisms of these materials still remain undistinguished. In present review, we summarized the up-to-date progress in the studies of carbon materials, and emphasized on the combination of experiment and theory to clarify the underlying mechanisms of these materials. At last, we proposed the perspectives on the proper strategies of elucidating the mechanisms of carbon materials as electrocatalysts towards ORR.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41524-019-0210-3", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8268586", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8262043", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1285194", 
            "issn": [
              "2057-3960"
            ], 
            "name": "npj Computational Materials", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "keywords": [
          "oxygen reduction reaction", 
          "metal-air batteries", 
          "proton exchange membrane fuel cells", 
          "exchange membrane fuel cells", 
          "carbon materials", 
          "membrane fuel cells", 
          "metal-free carbon-based electrocatalysts", 
          "metal-free carbon materials", 
          "fuel cells", 
          "carbon-based electrocatalysts", 
          "excellent ORR activity", 
          "advanced carbon materials", 
          "oxygen reduction mechanism", 
          "stable electrocatalysts", 
          "commercial platinum", 
          "ORR activity", 
          "durable catalysts", 
          "reduction reaction", 
          "sluggish kinetics", 
          "electrocatalysts", 
          "catalytic mechanism", 
          "date progress", 
          "combination of experiments", 
          "reduction mechanism", 
          "promising alternative", 
          "widespread application", 
          "batteries", 
          "reaction", 
          "materials", 
          "heteroatoms", 
          "catalyst", 
          "cathode", 
          "platinum", 
          "significant progress", 
          "Pt", 
          "carbon", 
          "present review", 
          "low abundance", 
          "kinetics", 
          "applications", 
          "mechanism", 
          "progress", 
          "cells", 
          "proper strategies", 
          "high price", 
          "experiments", 
          "defects", 
          "activity", 
          "alternative", 
          "strategies", 
          "combination", 
          "review", 
          "development", 
          "theory", 
          "up", 
          "prices", 
          "study", 
          "abundance", 
          "perspective"
        ], 
        "name": "A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts", 
        "pagination": "78", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1118097797"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41524-019-0210-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41524-019-0210-3", 
          "https://app.dimensions.ai/details/publication/pub.1118097797"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_817.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41524-019-0210-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41524-019-0210-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41524-019-0210-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41524-019-0210-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41524-019-0210-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    244 TRIPLES      21 PREDICATES      99 URIs      75 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41524-019-0210-3 schema:about anzsrc-for:03
    2 anzsrc-for:0302
    3 anzsrc-for:0303
    4 anzsrc-for:0306
    5 anzsrc-for:09
    6 anzsrc-for:0912
    7 schema:author N803073ee3ca94492b1df8c9058d92483
    8 schema:citation sg:pub.10.1007/s12274-015-0960-2
    9 sg:pub.10.1007/s40820-017-0157-1
    10 sg:pub.10.1007/s40820-017-0181-1
    11 sg:pub.10.1038/376238a0
    12 sg:pub.10.1038/natrevmats.2016.64
    13 sg:pub.10.1038/nature11115
    14 sg:pub.10.1038/nchem.1069
    15 sg:pub.10.1038/ncomms13285
    16 sg:pub.10.1038/nnano.2014.184
    17 sg:pub.10.1038/srep01810
    18 sg:pub.10.1038/srep05130
    19 sg:pub.10.1038/srep09304
    20 schema:datePublished 2019-07-19
    21 schema:datePublishedReg 2019-07-19
    22 schema:description The sluggish kinetics of Oxygen Reduction Reaction (ORR) at the cathode in proton exchange membrane fuel cells or metal-air batteries requires highly effective and stable electrocatalysts to boost the reaction. The low abundance and high price of Pt-based electrocatalysts hamper the widespread application of proton exchange membrane fuel cells and metal-air batteries. As promising alternatives, metal-free carbon materials, especially upon doping heteroatoms or creating defects demonstrated excellent ORR activity, which is as efficient as or even superior to commercial platinum on carbon. Significant progress on the development of advanced carbon materials as highly stable and durable catalysts has been achieved, but the catalytic mechanisms of these materials still remain undistinguished. In present review, we summarized the up-to-date progress in the studies of carbon materials, and emphasized on the combination of experiment and theory to clarify the underlying mechanisms of these materials. At last, we proposed the perspectives on the proper strategies of elucidating the mechanisms of carbon materials as electrocatalysts towards ORR.
    23 schema:genre article
    24 schema:isAccessibleForFree true
    25 schema:isPartOf N3ea6ec4b84a8477fb2008dde8a985cd4
    26 Nb38d753eb53e4ea3ab0c91075f6ea272
    27 sg:journal.1285194
    28 schema:keywords ORR activity
    29 Pt
    30 abundance
    31 activity
    32 advanced carbon materials
    33 alternative
    34 applications
    35 batteries
    36 carbon
    37 carbon materials
    38 carbon-based electrocatalysts
    39 catalyst
    40 catalytic mechanism
    41 cathode
    42 cells
    43 combination
    44 combination of experiments
    45 commercial platinum
    46 date progress
    47 defects
    48 development
    49 durable catalysts
    50 electrocatalysts
    51 excellent ORR activity
    52 exchange membrane fuel cells
    53 experiments
    54 fuel cells
    55 heteroatoms
    56 high price
    57 kinetics
    58 low abundance
    59 materials
    60 mechanism
    61 membrane fuel cells
    62 metal-air batteries
    63 metal-free carbon materials
    64 metal-free carbon-based electrocatalysts
    65 oxygen reduction mechanism
    66 oxygen reduction reaction
    67 perspective
    68 platinum
    69 present review
    70 prices
    71 progress
    72 promising alternative
    73 proper strategies
    74 proton exchange membrane fuel cells
    75 reaction
    76 reduction mechanism
    77 reduction reaction
    78 review
    79 significant progress
    80 sluggish kinetics
    81 stable electrocatalysts
    82 strategies
    83 study
    84 theory
    85 up
    86 widespread application
    87 schema:name A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts
    88 schema:pagination 78
    89 schema:productId Na19417525f12450f866941fb18d53a18
    90 Ndb0b4bbfd4974f4c851a02eb2056f695
    91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1118097797
    92 https://doi.org/10.1038/s41524-019-0210-3
    93 schema:sdDatePublished 2022-08-04T17:07
    94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    95 schema:sdPublisher N95951d52554f4fa9bb78d106b32d3c84
    96 schema:url https://doi.org/10.1038/s41524-019-0210-3
    97 sgo:license sg:explorer/license/
    98 sgo:sdDataset articles
    99 rdf:type schema:ScholarlyArticle
    100 N00c0a764c2c24f6cac54f151ad7520e4 rdf:first sg:person.0660762314.51
    101 rdf:rest N732586c1b6ab4edf9e540bb13b77ac47
    102 N0bd8794df20444519228eb10374d5a7d rdf:first sg:person.014165601401.58
    103 rdf:rest N4a16103dd20d45e6ba33ce8f75e17313
    104 N3ea6ec4b84a8477fb2008dde8a985cd4 schema:volumeNumber 5
    105 rdf:type schema:PublicationVolume
    106 N4a16103dd20d45e6ba33ce8f75e17313 rdf:first sg:person.013320366777.65
    107 rdf:rest N8093435855e641cfa5f76c7a3e4db09e
    108 N732586c1b6ab4edf9e540bb13b77ac47 rdf:first sg:person.01175360517.08
    109 rdf:rest Nb04c93c4e9d641bf9577a52abe2f0706
    110 N803073ee3ca94492b1df8c9058d92483 rdf:first sg:person.011052031513.42
    111 rdf:rest Nf33a8ab1bd0b423384ddeec29342ce4e
    112 N8093435855e641cfa5f76c7a3e4db09e rdf:first sg:person.011436056757.16
    113 rdf:rest N00c0a764c2c24f6cac54f151ad7520e4
    114 N95951d52554f4fa9bb78d106b32d3c84 schema:name Springer Nature - SN SciGraph project
    115 rdf:type schema:Organization
    116 Na19417525f12450f866941fb18d53a18 schema:name dimensions_id
    117 schema:value pub.1118097797
    118 rdf:type schema:PropertyValue
    119 Nb04c93c4e9d641bf9577a52abe2f0706 rdf:first sg:person.01000207404.23
    120 rdf:rest rdf:nil
    121 Nb38d753eb53e4ea3ab0c91075f6ea272 schema:issueNumber 1
    122 rdf:type schema:PublicationIssue
    123 Ndb0b4bbfd4974f4c851a02eb2056f695 schema:name doi
    124 schema:value 10.1038/s41524-019-0210-3
    125 rdf:type schema:PropertyValue
    126 Nf33a8ab1bd0b423384ddeec29342ce4e rdf:first sg:person.016051652302.54
    127 rdf:rest N0bd8794df20444519228eb10374d5a7d
    128 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Chemical Sciences
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Inorganic Chemistry
    133 rdf:type schema:DefinedTerm
    134 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Macromolecular and Materials Chemistry
    136 rdf:type schema:DefinedTerm
    137 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Physical Chemistry (incl. Structural)
    139 rdf:type schema:DefinedTerm
    140 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Engineering
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Materials Engineering
    145 rdf:type schema:DefinedTerm
    146 sg:grant.8262043 http://pending.schema.org/fundedItem sg:pub.10.1038/s41524-019-0210-3
    147 rdf:type schema:MonetaryGrant
    148 sg:grant.8268586 http://pending.schema.org/fundedItem sg:pub.10.1038/s41524-019-0210-3
    149 rdf:type schema:MonetaryGrant
    150 sg:journal.1285194 schema:issn 2057-3960
    151 schema:name npj Computational Materials
    152 schema:publisher Springer Nature
    153 rdf:type schema:Periodical
    154 sg:person.01000207404.23 schema:affiliation grid-institutes:grid.410726.6
    155 schema:familyName Wang
    156 schema:givenName Jiacheng
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000207404.23
    158 rdf:type schema:Person
    159 sg:person.011052031513.42 schema:affiliation grid-institutes:grid.410726.6
    160 schema:familyName Ma
    161 schema:givenName Ruguang
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011052031513.42
    163 rdf:type schema:Person
    164 sg:person.011436056757.16 schema:affiliation grid-institutes:grid.454856.e
    165 schema:familyName Zhang
    166 schema:givenName Tao
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011436056757.16
    168 rdf:type schema:Person
    169 sg:person.01175360517.08 schema:affiliation grid-institutes:grid.458492.6
    170 schema:familyName Yang
    171 schema:givenName Minghui
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175360517.08
    173 rdf:type schema:Person
    174 sg:person.013320366777.65 schema:affiliation grid-institutes:grid.454856.e
    175 schema:familyName Liu
    176 schema:givenName Qian
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013320366777.65
    178 rdf:type schema:Person
    179 sg:person.014165601401.58 schema:affiliation grid-institutes:grid.454856.e
    180 schema:familyName Zhou
    181 schema:givenName Yao
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014165601401.58
    183 rdf:type schema:Person
    184 sg:person.016051652302.54 schema:affiliation grid-institutes:grid.410726.6
    185 schema:familyName Lin
    186 schema:givenName Gaoxin
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016051652302.54
    188 rdf:type schema:Person
    189 sg:person.0660762314.51 schema:affiliation grid-institutes:grid.64939.31
    190 schema:familyName Shan
    191 schema:givenName Guangcun
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660762314.51
    193 rdf:type schema:Person
    194 sg:pub.10.1007/s12274-015-0960-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007437610
    195 https://doi.org/10.1007/s12274-015-0960-2
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s40820-017-0157-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091925210
    198 https://doi.org/10.1007/s40820-017-0157-1
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s40820-017-0181-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100076937
    201 https://doi.org/10.1007/s40820-017-0181-1
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/376238a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004659378
    204 https://doi.org/10.1038/376238a0
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/natrevmats.2016.64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018712965
    207 https://doi.org/10.1038/natrevmats.2016.64
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nature11115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013935373
    210 https://doi.org/10.1038/nature11115
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nchem.1069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045401156
    213 https://doi.org/10.1038/nchem.1069
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/ncomms13285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037876832
    216 https://doi.org/10.1038/ncomms13285
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nnano.2014.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014287703
    219 https://doi.org/10.1038/nnano.2014.184
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/srep01810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023371470
    222 https://doi.org/10.1038/srep01810
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/srep05130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015159108
    225 https://doi.org/10.1038/srep05130
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/srep09304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022557365
    228 https://doi.org/10.1038/srep09304
    229 rdf:type schema:CreativeWork
    230 grid-institutes:grid.410726.6 schema:alternateName Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
    231 University of Chinese Academy of Sciences, 19A Yuquan Rd, 100049, Beijing, Shijingshan District, China
    232 schema:name Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
    233 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, 200050, Shanghai, China
    234 University of Chinese Academy of Sciences, 19A Yuquan Rd, 100049, Beijing, Shijingshan District, China
    235 rdf:type schema:Organization
    236 grid-institutes:grid.454856.e schema:alternateName State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, 200050, Shanghai, China
    237 schema:name State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, 200050, Shanghai, China
    238 rdf:type schema:Organization
    239 grid-institutes:grid.458492.6 schema:alternateName Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201, Ningbo, China
    240 schema:name Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201, Ningbo, China
    241 rdf:type schema:Organization
    242 grid-institutes:grid.64939.31 schema:alternateName School of Instrumentation Science and Opto-electronics Engineering, Beihang University, 100191, Beijing, China
    243 schema:name School of Instrumentation Science and Opto-electronics Engineering, Beihang University, 100191, Beijing, China
    244 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...