Numerical prediction of colloidal phase separation by direct computation of Navier–Stokes equation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Michio Tateno, Hajime Tanaka

ABSTRACT

Numerical prediction of out-of-equilibrium processes in soft and bio matter containing liquids is highly desirable. However, it is quite challenging primarily because the motions of the components at different hierarchical levels (e.g., large colloids and small solvent molecules) are spatio-temporally coupled in a complicated manner via momentum conservation. Here we critically examine the predictability of numerical simulations for colloidal phase separation as a prototype example of self-organization of soft materials containing a liquid. We use coarse-grained hydrodynamic simulations to tackle this problem, and succeed in almost perfectly reproducing the structural and topological evolution experimentally observed by three-dimensional confocal microscopy without any adjustable parameters. Furthermore, comparison with non-hydrodynamic simulations shows the fundamental importance of many-body hydrodynamic interactions in colloidal phase separation. The predictive power of our computational approach may significantly contribute to not only the basic understanding of the dynamical behavior and self-organization of soft, bio and active matter but also the computer-aided design of colloidal materials. More... »

PAGES

40

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41524-019-0178-z

DOI

http://dx.doi.org/10.1038/s41524-019-0178-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113176092


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, 153-8505, Tokyo, Meguro-ku, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tateno", 
        "givenName": "Michio", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, 153-8505, Tokyo, Meguro-ku, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanaka", 
        "givenName": "Hajime", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0021-9797(70)90008-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004024617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b821250c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005336631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4371(97)00184-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009555178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/14/33/201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010911743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1012148755", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1012148755", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/12/15/201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013502768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020784108", 
          "https://doi.org/10.1038/nature06931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5sm01414j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022611017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.fl.20.010188.000551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022796703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/17/15/l02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023096088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416811a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023939497", 
          "https://doi.org/10.1038/416811a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416811a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023939497", 
          "https://doi.org/10.1038/416811a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2509(61)80035-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024533176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.2000.6592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025610734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.036707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026493048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.036707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026493048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/26/33/333101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029073239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470371572.ch2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031808702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.238302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032456436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.238302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032456436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.238302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032456436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.031402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032863088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.031402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032863088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/19/32/323101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035892424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcis.2011.11.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036159868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.2006.1764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039893743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4834696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040182730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/16/38/035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042340898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/16/38/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045006121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2013.10.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047031640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-8914(74)90198-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047133194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-8914(74)90198-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047133194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051279409", 
          "https://doi.org/10.1038/nmat1580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051279409", 
          "https://doi.org/10.1038/nmat1580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4871624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052853841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.220601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052916438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.220601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052916438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112001006735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053786037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112001005912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053965297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112099007557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054069745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112096002170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054081133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp111388m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056080922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp111388m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056080922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1538602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057717970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.436761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058014792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.472355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058051963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.478857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058068135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.27.2152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060470928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.27.2152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060470928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.14958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.14958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.55.3124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060720563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.55.3124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060720563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.6842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060723904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.6842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060723904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.021802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060727888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.021802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060727888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.041404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060734356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.041404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060734356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.86.051403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060744120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.86.051403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060744120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.245702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.245702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.078103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.078103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.1143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.1143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1122/1.4892115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062413562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.77.084804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063123713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.77.084804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063123713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/19/3/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064228941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/79/58003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064231638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm.2017.7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083855888", 
          "https://doi.org/10.1038/nrm.2017.7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms15846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086101679", 
          "https://doi.org/10.1038/ncomms15846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511534874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098670020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c8sm00002f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101827540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c8sm00189h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103205436"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Numerical prediction of out-of-equilibrium processes in soft and bio matter containing liquids is highly desirable. However, it is quite challenging primarily because the motions of the components at different hierarchical levels (e.g., large colloids and small solvent molecules) are spatio-temporally coupled in a complicated manner via momentum conservation. Here we critically examine the predictability of numerical simulations for colloidal phase separation as a prototype example of self-organization of soft materials containing a liquid. We use coarse-grained hydrodynamic simulations to tackle this problem, and succeed in almost perfectly reproducing the structural and topological evolution experimentally observed by three-dimensional confocal microscopy without any adjustable parameters. Furthermore, comparison with non-hydrodynamic simulations shows the fundamental importance of many-body hydrodynamic interactions in colloidal phase separation. The predictive power of our computational approach may significantly contribute to not only the basic understanding of the dynamical behavior and self-organization of soft, bio and active matter but also the computer-aided design of colloidal materials.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41524-019-0178-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6112571", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7523224", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1285194", 
        "issn": [
          "2057-3960"
        ], 
        "name": "npj Computational Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Numerical prediction of colloidal phase separation by direct computation of Navier\u2013Stokes equation", 
    "pagination": "40", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41524-019-0178-z"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c6a86148f7017349223644f58197c858d82ff7a8a3a78ccc4e082b0adaeb6943"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113176092"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41524-019-0178-z", 
      "https://app.dimensions.ai/details/publication/pub.1113176092"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56193_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41524-019-0178-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41524-019-0178-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41524-019-0178-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41524-019-0178-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41524-019-0178-z'


 

This table displays all metadata directly associated to this object as RDF triples.

250 TRIPLES      21 PREDICATES      86 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41524-019-0178-z schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N200831f22d4e4211ab88143590b453d4
4 schema:citation sg:pub.10.1038/416811a
5 sg:pub.10.1038/nature06931
6 sg:pub.10.1038/ncomms15846
7 sg:pub.10.1038/nmat1580
8 sg:pub.10.1038/nrm.2017.7
9 https://app.dimensions.ai/details/publication/pub.1012148755
10 https://doi.org/10.1002/9780470371572.ch2
11 https://doi.org/10.1006/jcph.2000.6592
12 https://doi.org/10.1016/0009-2509(61)80035-3
13 https://doi.org/10.1016/0021-9797(70)90008-1
14 https://doi.org/10.1016/0031-8914(74)90198-0
15 https://doi.org/10.1016/j.cma.2013.10.029
16 https://doi.org/10.1016/j.jcis.2011.11.050
17 https://doi.org/10.1016/s0378-4371(97)00184-2
18 https://doi.org/10.1017/cbo9780511534874
19 https://doi.org/10.1017/s0022112001005912
20 https://doi.org/10.1017/s0022112001006735
21 https://doi.org/10.1017/s0022112096002170
22 https://doi.org/10.1017/s0022112099007557
23 https://doi.org/10.1021/jp111388m
24 https://doi.org/10.1039/b821250c
25 https://doi.org/10.1039/c5sm01414j
26 https://doi.org/10.1039/c8sm00002f
27 https://doi.org/10.1039/c8sm00189h
28 https://doi.org/10.1063/1.1538602
29 https://doi.org/10.1063/1.436761
30 https://doi.org/10.1063/1.472355
31 https://doi.org/10.1063/1.478857
32 https://doi.org/10.1063/1.4834696
33 https://doi.org/10.1063/1.4871624
34 https://doi.org/10.1088/0953-8984/12/15/201
35 https://doi.org/10.1088/0953-8984/14/33/201
36 https://doi.org/10.1088/0953-8984/16/38/009
37 https://doi.org/10.1088/0953-8984/16/38/035
38 https://doi.org/10.1088/0953-8984/17/15/l02
39 https://doi.org/10.1088/0953-8984/19/32/323101
40 https://doi.org/10.1088/0953-8984/26/33/333101
41 https://doi.org/10.1098/rspa.2006.1764
42 https://doi.org/10.1103/physreva.27.2152
43 https://doi.org/10.1103/physrevb.49.14958
44 https://doi.org/10.1103/physreve.55.3124
45 https://doi.org/10.1103/physreve.59.6842
46 https://doi.org/10.1103/physreve.65.021802
47 https://doi.org/10.1103/physreve.71.036707
48 https://doi.org/10.1103/physreve.73.041404
49 https://doi.org/10.1103/physreve.74.031402
50 https://doi.org/10.1103/physreve.86.051403
51 https://doi.org/10.1103/physrevlett.104.245702
52 https://doi.org/10.1103/physrevlett.70.1339
53 https://doi.org/10.1103/physrevlett.85.1338
54 https://doi.org/10.1103/physrevlett.93.220601
55 https://doi.org/10.1103/physrevlett.95.078103
56 https://doi.org/10.1103/physrevlett.95.238302
57 https://doi.org/10.1103/revmodphys.85.1143
58 https://doi.org/10.1122/1.4892115
59 https://doi.org/10.1143/jpsj.77.084804
60 https://doi.org/10.1146/annurev.fl.20.010188.000551
61 https://doi.org/10.1209/0295-5075/19/3/001
62 https://doi.org/10.1209/0295-5075/79/58003
63 schema:datePublished 2019-12
64 schema:datePublishedReg 2019-12-01
65 schema:description Numerical prediction of out-of-equilibrium processes in soft and bio matter containing liquids is highly desirable. However, it is quite challenging primarily because the motions of the components at different hierarchical levels (e.g., large colloids and small solvent molecules) are spatio-temporally coupled in a complicated manner via momentum conservation. Here we critically examine the predictability of numerical simulations for colloidal phase separation as a prototype example of self-organization of soft materials containing a liquid. We use coarse-grained hydrodynamic simulations to tackle this problem, and succeed in almost perfectly reproducing the structural and topological evolution experimentally observed by three-dimensional confocal microscopy without any adjustable parameters. Furthermore, comparison with non-hydrodynamic simulations shows the fundamental importance of many-body hydrodynamic interactions in colloidal phase separation. The predictive power of our computational approach may significantly contribute to not only the basic understanding of the dynamical behavior and self-organization of soft, bio and active matter but also the computer-aided design of colloidal materials.
66 schema:genre research_article
67 schema:inLanguage en
68 schema:isAccessibleForFree false
69 schema:isPartOf N89d3147c4a384cbe91789bc81f418844
70 Nb02ac1a623eb45768a140854e00c7294
71 sg:journal.1285194
72 schema:name Numerical prediction of colloidal phase separation by direct computation of Navier–Stokes equation
73 schema:pagination 40
74 schema:productId N9845743a20c44becbc0d912cf13196bf
75 Nc13599497c524709ab36d22afa364135
76 Nc689dde03e954494a6daef57b5c07896
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113176092
78 https://doi.org/10.1038/s41524-019-0178-z
79 schema:sdDatePublished 2019-04-15T09:27
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher Na190ad5e78014a3c83c1bac0f4325d33
82 schema:url https://www.nature.com/articles/s41524-019-0178-z
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N200831f22d4e4211ab88143590b453d4 rdf:first N82c59696832741218a486b2446ec905d
87 rdf:rest Neccdb2c5a09044b6a9fdf5ac65239d0b
88 N82c59696832741218a486b2446ec905d schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
89 schema:familyName Tateno
90 schema:givenName Michio
91 rdf:type schema:Person
92 N89d3147c4a384cbe91789bc81f418844 schema:issueNumber 1
93 rdf:type schema:PublicationIssue
94 N9845743a20c44becbc0d912cf13196bf schema:name readcube_id
95 schema:value c6a86148f7017349223644f58197c858d82ff7a8a3a78ccc4e082b0adaeb6943
96 rdf:type schema:PropertyValue
97 Na190ad5e78014a3c83c1bac0f4325d33 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Nb02ac1a623eb45768a140854e00c7294 schema:volumeNumber 5
100 rdf:type schema:PublicationVolume
101 Nc13599497c524709ab36d22afa364135 schema:name dimensions_id
102 schema:value pub.1113176092
103 rdf:type schema:PropertyValue
104 Nc1fec740ce814b7cab7fa4d5f6798f0f schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
105 schema:familyName Tanaka
106 schema:givenName Hajime
107 rdf:type schema:Person
108 Nc689dde03e954494a6daef57b5c07896 schema:name doi
109 schema:value 10.1038/s41524-019-0178-z
110 rdf:type schema:PropertyValue
111 Neccdb2c5a09044b6a9fdf5ac65239d0b rdf:first Nc1fec740ce814b7cab7fa4d5f6798f0f
112 rdf:rest rdf:nil
113 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
114 schema:name Chemical Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
117 schema:name Physical Chemistry (incl. Structural)
118 rdf:type schema:DefinedTerm
119 sg:grant.6112571 http://pending.schema.org/fundedItem sg:pub.10.1038/s41524-019-0178-z
120 rdf:type schema:MonetaryGrant
121 sg:grant.7523224 http://pending.schema.org/fundedItem sg:pub.10.1038/s41524-019-0178-z
122 rdf:type schema:MonetaryGrant
123 sg:journal.1285194 schema:issn 2057-3960
124 schema:name npj Computational Materials
125 rdf:type schema:Periodical
126 sg:pub.10.1038/416811a schema:sameAs https://app.dimensions.ai/details/publication/pub.1023939497
127 https://doi.org/10.1038/416811a
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nature06931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020784108
130 https://doi.org/10.1038/nature06931
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/ncomms15846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086101679
133 https://doi.org/10.1038/ncomms15846
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nmat1580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051279409
136 https://doi.org/10.1038/nmat1580
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nrm.2017.7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083855888
139 https://doi.org/10.1038/nrm.2017.7
140 rdf:type schema:CreativeWork
141 https://app.dimensions.ai/details/publication/pub.1012148755 schema:CreativeWork
142 https://doi.org/10.1002/9780470371572.ch2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031808702
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1006/jcph.2000.6592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025610734
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/0009-2509(61)80035-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024533176
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/0021-9797(70)90008-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004024617
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/0031-8914(74)90198-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047133194
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.cma.2013.10.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047031640
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.jcis.2011.11.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036159868
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0378-4371(97)00184-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009555178
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1017/cbo9780511534874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098670020
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1017/s0022112001005912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053965297
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1017/s0022112001006735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053786037
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1017/s0022112096002170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054081133
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1017/s0022112099007557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054069745
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1021/jp111388m schema:sameAs https://app.dimensions.ai/details/publication/pub.1056080922
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1039/b821250c schema:sameAs https://app.dimensions.ai/details/publication/pub.1005336631
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1039/c5sm01414j schema:sameAs https://app.dimensions.ai/details/publication/pub.1022611017
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1039/c8sm00002f schema:sameAs https://app.dimensions.ai/details/publication/pub.1101827540
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1039/c8sm00189h schema:sameAs https://app.dimensions.ai/details/publication/pub.1103205436
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1063/1.1538602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057717970
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1063/1.436761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058014792
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1063/1.472355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058051963
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1063/1.478857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058068135
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1063/1.4834696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040182730
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1063/1.4871624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052853841
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1088/0953-8984/12/15/201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013502768
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1088/0953-8984/14/33/201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010911743
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1088/0953-8984/16/38/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045006121
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1088/0953-8984/16/38/035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042340898
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1088/0953-8984/17/15/l02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023096088
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1088/0953-8984/19/32/323101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035892424
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1088/0953-8984/26/33/333101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029073239
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1098/rspa.2006.1764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039893743
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physreva.27.2152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060470928
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevb.49.14958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060570133
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physreve.55.3124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060720563
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physreve.59.6842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060723904
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physreve.65.021802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060727888
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physreve.71.036707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026493048
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physreve.73.041404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060734356
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physreve.74.031402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032863088
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physreve.86.051403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060744120
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevlett.104.245702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060757108
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physrevlett.70.1339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060806403
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physrevlett.85.1338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821673
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/physrevlett.93.220601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052916438
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1103/physrevlett.95.078103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830746
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1103/physrevlett.95.238302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032456436
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1103/revmodphys.85.1143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839747
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1122/1.4892115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062413562
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1143/jpsj.77.084804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063123713
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1146/annurev.fl.20.010188.000551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022796703
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1209/0295-5075/19/3/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064228941
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1209/0295-5075/79/58003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064231638
247 rdf:type schema:CreativeWork
248 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
249 schema:name Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, 153-8505, Tokyo, Meguro-ku, Japan
250 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...